1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
2 years ago
6

BRAINLIEST!!!!!! PLEASE HELP ASAP!!!!!! PLEASE ANSWER THESE!!!!! PLEASE DON'T SPAM!!!!!.​

Chemistry
1 answer:
Len [333]2 years ago
4 0

Answer:

Explanation: wht do i do??

You might be interested in
What is limiting about a liquid Mercury thermometer?
ella [17]
There are non-mercury thermometers with temperature and accuracy rangers equal to most mercury thermometers.
8 0
3 years ago
In the engineering design process what do engineers do immediately after testing a prototype
mote1985 [20]

Answer:

Iterate to improve the solution

Explanation:

apex

5 0
3 years ago
In order to prepare very dilute solutions, a lab technician chooses to perform a series of dilutions instead of measuring a very
SVETLANKA909090 [29]

<u>Answer:</u> The final concentration of potassium nitrate is 5.70\times 10^{-6}M

<u>Explanation:</u>

To calculate the molecular mass of solute, we use the equation used to calculate the molarity of solution:

\text{Molarity of the solution}=\frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}

We are given:

Mass of potassium nitrate (solute) = 0.360 g

Molar mass of potassium nitrate = 101.1 g/mol

Volume of solution = 500.0 mL

Putting values in above equation, we get:

\text{Molarity of }KNO_3=\frac{0.360\times 1000}{101.1\times 500.0}\\\\\text{Molarity of }KNO_3=7.12\times 10^{-3}M

To calculate the molarity of the diluted solution, we use the equation:

M_1V_1=M_2V_2          .......(1)

  • <u>Calculating for first dilution:</u>

M_1\text{ and }V_1 are the molarity and volume of the concentrated KNO_3 solution

M_2\text{ and }V_2 are the molarity and volume of diluted KNO_3 solution

We are given:

M_1=7.12\times 10^{-3}M\\V_1=10mL\\M_2=?M\\V_2=500.0mL

Putting values in equation 1, we get:

7.12\times 10^{-3}\times 10=M_2\times 500\\\\M_2=\frac{7.12\times 10^{-3}\times 10}{500}=1.424\times 10^{-4}M

  • <u>Calculating for second dilution:</u>

M_2\text{ and }V_2 are the molarity and volume of the concentrated KNO_3 solution

M_3\text{ and }V_3 are the molarity and volume of diluted KNO_3 solution

We are given:

M_2=1.424\times 10^{-4}M\\V_2=10mL\\M_3=?M\\V_3=250.0mL

Putting values in equation 1, we get:

1.424\times 10^{-4}\times 10=M_3\times 250\\\\M_3=\frac{1.424\times 10^{-4}\times 10}{250}=5.70\times 10^{-6}M

Hence, the final concentration of potassium nitrate is 5.70\times 10^{-6}M

8 0
2 years ago
True or false: properties help us identify matter
sdas [7]

true.

Hope this helps!

3 0
3 years ago
Read 2 more answers
The enthalpy change for converting 1.00 mol of ice at -50.0 ∘c to water at 60.0∘c is ________ kj. the specific heats of ice, wat
guajiro [1.7K]
First, we have to get:

1- The heat required to increase T of ice from -50 to 0 °C:

according to q formula:

q1 = m*C*ΔT

when m is the mass of ice = mol * molar mass

                                             =  1 mol * 18 mol/g

                                            = 18 g

and C is the specific heat capacity of ice = 2.09 J/g-K

and ΔT change in temperature = 0- (-50) = 50°C

by substitution:

∴q1 = 18 g * 2.09 J/g-K *50°C

       = 1881 J = 1.881 KJ

2- the heat required to melt this mass of ice is :

q2 = n*ΔHfus 

when n is the number of moles of ice = 1 mol

and ΔHfus = 6.01 KJ/mol

by substitution:

q2 = 1 mol * 6.01 KJ/mol

     = 6.01 KJ

3- the heat required to increase the water temperature from 0°C to 60 °C is:

q3 = m*C*ΔT

when m is the mass of water = 18 g 

C is the specific heat capacity of water = 4.18 J/g-K

ΔT is the change of Temperature of water = 60°C - 0°C = 60°C

by substitution:

∴q3 = 18 g * 4.18 J/g-K * 60°C

      = 4514 J = 4.514 KJ

∴the total change of enthalpy = q1+q2+q3

                                                  = 1.881 KJ  +6.01 KJ + 4.514 KJ

                                                  = 12.405 KJ


5 0
3 years ago
Other questions:
  • Which is one way that scientist communicate the results of an experiment
    9·2 answers
  • Explain how the structure of saturated fats poses a danger to your health
    12·2 answers
  • Butane (c4 h10(g), hf = –125.6 kj/mol) reacts with oxygen to produce carbon dioxide (co2 , hf = –393.5 kj/mol ) and water (h2 o,
    14·2 answers
  • How many valence electrons does He have
    8·1 answer
  • Which two transitions can magma undergo?
    15·2 answers
  • Were do baby's come from
    15·1 answer
  • How much heat must be transferred to 1600 g of iron to change the iron's
    13·1 answer
  • What happens to a sheet of copper as the average kinetic energy of the copper molecules decreases?
    10·2 answers
  • I’m about to die of cuteness overload <br> Naruto, sasuke, sakura, and Kakashi-sensei
    6·2 answers
  • The mineral content of rocks helps to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!