1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
13

Gustavo tested 1000 calculators to see if any were defective. The company claimed that the probability of a defective calculator

was 1% per 1000 calculators. Gustavo found 15 defective calculators out of 1000.
What was the predicted frequency?

Predicted Frequency . . .

=(# of trials)(theoretical probability)
=(1000)(0.01)

The predicted frequency was ____
A: 1
B: 10
C: 100
D: 1000

What was the relative frequency?

Relative Frequency = Observed Frequency/Total Number of Trails

The relative frequency was _____
A: 0.15%
B: 1%
C: 1.5% 
D: 15% 
Mathematics
2 answers:
Wittaler [7]3 years ago
8 0
We are to find the predicted and relative frequency of the defective calculators.

a) The company claimed that there is 1% probability of defective calculators out of 1000.
So predicted frequency = 1% of 1000 
= 0.01 x 1000
= 10

b) 15 defective calculators were found in 1000 calculators.
Relative Frequency = Observed Frequency / Total Number
= 15/1000 x 100%
= 1.5%
Katarina [22]3 years ago
3 0

ITS 10

Then 1.5% thank this

You might be interested in
10 percent of 145..........
jeka57 [31]
To get this, take 0.10 x 145 = 14.5
3 0
3 years ago
Read 2 more answers
What are the Values of h and k?
Basile [38]

Answer:

h=4, k=-2

Step-by-step explanation:

we know that

In the function f(x) the inflection point is at (0,0)

In the function g(x) the inflection point is at (4,-2)

so

the rule of the translation of f(x) to g(x) is equal to

(x,y)-----> (x+4,y-2)

That means-----> the translation is 4 units to the right and 2 units down

The equation of g(x) is equal to

g(x)=(x-4)^{3} -2

therefore

h=4, k=-2

4 0
3 years ago
Read 2 more answers
En la tienda de mascotas "Animalo-T", se desea elevar un elefante de 2,900 kg utilizando una elevadora hidráulica de plato grand
Korvikt [17]

Answer:

Se requiere una fuerza de 854.473 newtons sobre el émbolo pequeño.

Step-by-step explanation:

Por el Principio de Pascal se conoce que el esfuerzo experimentado por el elefante es igual a la presión ejercida por el plato pequeño. Es decir:

\frac{F_{1}}{A_{1}} = \frac{F_{2}}{A_{2}} (1)

Donde:

F_{1} - Fuerza experimentada por el elefante, medida en newtons.

F_{2} - Fuerza aplicada sobre el plato pequeño, medida en newtons.

A_{1} - Área del plato grande, medida en metros cuadrados.

A_{2} - Área del plato pequeño, medida en metros cuadrados.

La fuerza aplicada sobre el plato pequeño es:

F_{2} = \left(\frac{A_{2}}{A_{1}} \right)\cdot F_{1}

La fuerza experimentada por el elefante es su propio peso. Por otra parte, el área del plato es directamente proporcional al cuadrado de su diámetro. Es decir:

F_{2} = \left(\frac{D_{2}}{D_{1}} \right)^{2}\cdot m\cdot g (2)

Donde:

D_{1} - Diámetro del plato grande, medido en centímetros.

D_{2} - Diámetro del plato pequeño, medido en centímetros.

m - Masa del elefante, medida en kilogramos.

g - Aceleración gravitacional, medida en metros por segundo cuadrado.

Si sabemos que D_{1} = 0.75\,m, D_{2} = 0.13\,m, m = 2900\,kg y g = 9.807\,\frac{m}{s^{2}}, entonces la fuerza a aplicar al émbolo pequeño es:

F_{2} = \left(\frac{0.13\,m}{0.75\,m} \right)^{2}\cdot (2900\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)

F_{2} = 854.473\,N

Se requiere una fuerza de 854.473 newtons sobre el émbolo pequeño.

3 0
3 years ago
Answer the question in the picture
Svet_ta [14]
<h3>Answer:</h3>
  • left picture (bottom expression): -cot(x)
  • right picture (top expression): tan(x)
<h3>Step-by-step explanation:</h3>

A graphing calculator can show you a graph of each expression, which you can compare to the offered choices.

_____

You can make use of the relations ...

... sin(a)+sin(b) = 2sin((a+b)/2)cos((a-b)/2)

... cos(a)+cos(b) = 2cos((a+b)/2)cos((a-b)/2)

... cos(a)-cos(b) = -2sin((a+b)/2)sin((a-b)/2)

Then you have ...

\dfrac{\cos{2x}-\cos{4x}}{\sin{2x}+\sin{4x}}=\dfrac{2\sin{3x}\sin{x}}{2\sin{3x}\cos{x}}=\dfrac{\sin{x}}{\cos{x}}=\tan{x}

and ...

\dfrac{\cos{2x}+\cos{4x}}{\sin{2x}-\sin{4x}}=\dfrac{2\cos{3x}\cos{x}}{-2\cos{3x}\sin{x}}=\dfrac{-\cos{x}}{\sin{x}}=-\cot{x}


6 0
3 years ago
Write 187.023 in word form
riadik2000 [5.3K]
One hundred eighty-seven and twenty-three thousandths
<span />
4 0
3 years ago
Read 2 more answers
Other questions:
  • Find the value of x for which ABCD must be a parallelogram
    9·2 answers
  • I need to solve for x and I’m confused it’s about angels please help me
    12·1 answer
  • Write this equation in standard form of each line passing through the two given points (2,3);(1,-2)
    8·1 answer
  • I need help with #14, #16, and #18
    11·2 answers
  • An experiment is conducted to compare the maximum load capacity in tons​ (the maximum weight that can be tolerated without​ brea
    5·1 answer
  • GIVING ALL OF MY POINTS! HELP:
    14·1 answer
  • Ill give you 22 brainly if you answer this
    13·1 answer
  • Match each polynomial with its degree
    8·1 answer
  • (3² - 2²) ³ + 42 ÷ 6 x 3² - 9
    9·2 answers
  • Please take a look at the picture and answer it. :)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!