Answer:
The gases and particles of earths atmosphere scatter sunlight in different directions making the sky a specific color. Since blue light travels shorter, smaller waves its scattered more than others.
<span>b. an atom’s outer energy level doesn't have the maximum number of electrons.</span>
Answer:
c. a phosphodiester bond between the 3' and 5' hydroxyl groups of neighboring sugars
Explanation:
Phosphodiester bond is the bond which is formed between the hydroxyl group of one nucleotide to the phosphate group of the another nucleotide. These are ester bonds. These bonds are central to all the life which is in existence on Earth. These bonds forms the backbone of the strands of the nucleic acid.
The bond is formed by the linkage of 3' carbon atom of one of the sugar unit to the 5' carbon atom of the another succeeding sugar unit.
<u>Hence, the answer is:- c. a phosphodiester bond between the 3' and 5' hydroxyl groups of neighboring sugars</u>
Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion
).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!