The mass of the object can also be determined if the density and volume of an object are known.
Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
Central "carbon" atom
2 oxygen atoms
held together by "covalent" bonds
has a "1s2 2s2 2px1 2py1 2pz0" electron
geometry
carbon atom is "sp" hybridized
The volume of oxygen required to burn 12.00 L ethane is calculated as follows
find the moles of C2H6 used
At STP 1 mole is always = 22.4 L, what about 12.00 L
= ( 12.00L x 1 moles) 22.4 L = 0.536 moles
write the reacting equation
2C2H6+ 7O2 = 4CO2 + 6H2O
by use of mole ratio between C2H6 :O2 which is 2:7 the moles of O2
= 0.536 x7/2= 1.876 moles
again at STP 1mole = 22.4 L what about 1.876 moles
= 22.4 L x 1.876 moles/ 1 mole = 42.02 L
Answer:
The answer is 98.07848. We assume you are converting between grams H2SO4 and mole. You can view more details on each measurement unit: This compound is also known as Sulfuric Acid. The SI base unit for amount of substance is the mole. 1 grams H2SO4 is equal to 0.010195916576195 mole.
<u>Quick conversion chart of moles H2SO3 to grams</u>
1 moles H2SO3 to grams = 82.07908 grams
2 moles H2SO3 to grams = 164.15816 grams
3 moles H2SO3 to grams = 246.23724 grams
4 moles H2SO3 to grams = 328.31632 grams
5 moles H2SO3 to grams = 410.3954 grams
6 moles H2SO3 to grams = 492.47448 grams
7 moles H2SO3 to grams = 574.55356 grams
8 moles H2SO3 to grams = 656.63264 grams
9 moles H2SO3 to grams = 738.71172 grams
10 moles H2SO3 to grams = 820.7908 grams