Complete Question
The complete question is shown on the first uploaded image
Answer:
10a The interest payment on the bond is = $ 8,204
10b The debit to cash for the bond proceeds is = $ 302,000
Explanation:
The explanation is shown on the second uploaded image
A long chain of hydrocarbon bonded to COOH is a FATTY acid.
Answer:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Explanation:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Thus, sound will travel at a slower rate in the denser object. If sound waves of the same energy were passed through a block of wood and a block of steel, which is more dense than the wood, the molecules of the steel would vibrate at a slower rate. Thus, sound passes more quickly through the wood, which is less dense.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.