Answer:
1/4
Step-by-step explanation:
Substitute x=-1 to find y
Given y= 2^2x
y(-1)=2^-2=1/(2^2)
The coordinates of the pre-image of point F' is (-2, 4)
<h3>How to determine the coordinates of the pre-image of point F'?</h3>
On the given graph, the location of point F' is given as:
F' = (4, -2)
The rule of reflection is given as
Reflection across line y = x
Mathematically, this is represented as
(x, y) = (y, x)
So, we have
F = (-2, 4)
Hence, the coordinates of the pre-image of point F' is (-2, 4)
Read more about transformation at:
brainly.com/question/4289712
#SPJ1
Ok, ranked by axis of symmetry
basically x=something is the axis of symmetry
the way to find the axis of symmetry is to convert to vertex form and find h and that's the axis of symmetry
but there's an easier way
for f(x)=ax^2+bx+c
the axis of symmetry is x=-b/2a
nice hack my teacher taught me
so
f(x)=3x^2+0x+0
axis of symmetry is -0/(3*2), so x=0 is the axis of symmetry for f(x)
g(x)=1x^2-4x+5,
axis of symmetry is -(-4)/(2*1)=4/2=2, x=2 is axis of symmetry for g(x)
h(x)=-2x^2+4x+1
axis of symmetry is -4/(2*-2)=-4/-4=1, x=1 is the axis of symmetry for h(x)
0<1<2
axisies
f(x)<h(x)<g(x)
order based on their axises of symmetry is f(x), h(x), g(x)
Answer:
14.62
Step-by-step explanation:
The domain is the range of the x-axis. In this situation the x range from 0 to 11, so the domain is D.