Answer:
Angle A and L are 140 degrees each.
Step-by-step explanation:
Since GO and AL are parallel to each other, we can use the same side interior theorem to figure out angle A and L. Let's focus on GA first. We know that same side interior angles are supplementary (sum is 180 degrees). We know angle G is 40 degrees, so to figure out angle A, you do 180-40 which equals 140. So angle A is 140 degrees. You repeat this process for OL and you should also get 140 degrees for L.
Answer:
x ≤ $12 a day
Step-by-step explanation:
5000-1400=3600
3600/300=12
Answer:
12/75 = 4/25
Step-by-step explanation:
Answer:
<h2>231cm²</h2>
Step-by-step explanation:
First, let's find the surface area of both the triangles
5x3=15
So, the surface area of the triangles is 15 sq.cm
Now, let's find the surface area of the base (large rectangle in the middle)
12x8=?
10x8=80
2x8=16
80+16=96
12x8=96
So, the surface area of the base, is 96sq.cm
Now, let's find the surface area of both of the side rectangles
12x5=60
60x2=120
So, the surface area of the two side rectangles is 120sq.cm
Now, let's find the total surface area by adding all of our answers.
120+96=216
216+15=231
<h2>
So hence, the surface area of this net is 231cm²</h2>
9514 1404 393
Answer:
64k^6 -64k^5 +(80/3)k^4 -(160/27)k^3 +(20/27)k^2 -(4/81)k +1/729
Step-by-step explanation:
The row of Pascal's triangle we need for a 6th power expansion is ...
1, 6, 15, 20, 15, 6, 1
These are the coefficients of the products (a^(n-k))(b^k) in the expansion of (a+b)^n as k ranges from 0 to n.
Your expansion is ...
1(2k)^6(-1/3)^0 +6(2k)^5(-1/3)^1 +15(2k)^4(-1/3)^2 +20(2k)^3(-1/3)^3 +...
15(2k)^2(-1/3)^4 +6(2k)^1(-1/3)^5 +1(2k)^0(-1/3)^6
= 64k^6 -64k^5 +(80/3)k^4 -(160/27)k^3 +(20/27)k^2 -(4/81)k +1/729