1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
3 years ago
10

A square and a rectangle have equal areas. If the dimensions of

Mathematics
2 answers:
Katena32 [7]3 years ago
6 0

Answer:

L = 3√5

Step-by-step explanation:

A square and a rectangle have equal areas.

Area of a square = Area of a rectangle

L² = H * W

If the dimensions of the rectangle are 15 units by 3 units,

L² = 15 * 3

L² = 45

Determine the length of the side of the square.

L = √45

L = 3√5

marin [14]3 years ago
3 0

Answer:

11.25

Step-by-step explanation:

You might be interested in
Does 2 feet and 1 inch add up too 3 feet
Makovka662 [10]

Answer:

No

Step-by-step explanation:

2 feet + 1 foot = 3 feet

1 foot = 12 inches, not 1 inch

If helpful, please give 5 star, thanks, and brainliest!

3 0
3 years ago
Read 2 more answers
I need help finding the Y-intercept
luda_lava [24]
2.5 43 dtsuusoqoajshshsjdjhehehehehejjejejatkwdskeywjfesndywirsjr
4 0
3 years ago
Read 2 more answers
The number line shows the elevation of the bottom of a harbor and the elevation of a fish swimming close to the surface what cha
galina1969 [7]

Answer:

Whatever number is larger than the number of the elevation of the bottom of the harbor

Step-by-step explanation:

the elevation needs to be smaller than the decrese of the elevation like this.

Ex:  The temputure elevated 28 degrees then decreased 30 degrees.

Boom :]

6 0
2 years ago
Read 2 more answers
Please help me!!!!!​
denpristay [2]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π               → A = π - (B + C)

                                               → B = π - (A + C)

                                               → C = π - (A + B)

Use Sum to Product Identity: sin A - sin B = 2 cos [(A + B)/2] · sin [(A - B)/2]

Use the following Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → RHS:</u>

LHS:                        sin A - sin B + sin C

                             = (sin A - sin B) + sin C

\text{Sum to Product:}\quad 2\cos \bigg(\dfrac{A+B}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad 2\cos \bigg(\dfrac{\pi -(B+C)}{2}+\dfrac{B}{2}}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad =2\cos \bigg(\dfrac{\pi -C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

.\qquad \qquad =2\cos \bigg(\dfrac{\pi}{2} -\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Cofunction:} \qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\cdot \sin \bigg(\dfrac{A-B}{2}\bigg)+2\cos \bigg(\dfrac{C}2{}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{Factor:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\bigg]

\text{Given:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)\bigg]\\\\\\.\qquad \qquad =2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\cos \bigg(\dfrac{\pi}{2} -\dfrac{(A+B)}{2}\bigg)\bigg]

\text{Cofunction:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ \sin \bigg(\dfrac{A-B}{2}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)\bigg]

\text{Sum to Product:}\qquad 2\sin \bigg(\dfrac{C}{2}\bigg)\bigg[ 2\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad \qquad =4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)

\text{LHS = RHS:}\quad 4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)=4\sin \bigg(\dfrac{A}{2}\bigg)\cdot \cos \bigg(\dfrac{B}{2}\bigg)\cdot \sin \bigg(\dfrac{C}{2}\bigg)\quad \checkmark

6 0
3 years ago
Solve the problem . (x – 2) = –14(x – 8)<br> 1) x=0<br> 2)x=--5 1/3<br> 3)x=-3 1/5<br> 4)x=3 1/5
Mrrafil [7]

Answer:

x=38/5

Step-by-step explanation:

distribute

Add 2 to both sides of the equation

Simplify

8 0
3 years ago
Other questions:
  • Find all critical points of the given plane autonomous system. (enter your answers as a comma-separated list.) x' = x + xy y' =
    5·1 answer
  • Find the absolute maximum and absolute minimum values of f on the given interval. f(x) = 4x3 − 6x2 − 24x + 1, [−2, 3] absolute m
    14·1 answer
  • How many tickets must be sold on Saturday to make the median and the mode the same?
    15·2 answers
  • Write the equation of the given circle.<br><br> center (-2, -2)<br> radius of 6
    5·1 answer
  • 1/100000 as a power of 10
    13·1 answer
  • PLEASE ANSWER THIS I WILL GIVE BRAINLIEST 50 POINTS ON THE LINE
    10·2 answers
  • Anyone got the answers for them?
    10·1 answer
  • Which lines in the graph have a slope greater than 1 but less than 2? Select all correct answers.
    6·1 answer
  • The sum of two numbers is 57. The larger number is three less than four times the smaller number. Find the numbers pls help i am
    10·2 answers
  • a family of five recently replaced its 5-gallon-per-minute showerheads with water-saving 2-gallon per minute showerheads. each m
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!