Answer:
what do you mean by this it don't make sense to me at all
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
vvvvv
Answer:
The test statistic
Z = 1.149
Since the calculated value of Z = 1.149 is less than 1.96 at 5% (0.05) level of significance.
The null hypothesis is accepted
Hence the proportion is not equal 0.04
<u>Step-by-step explanation:</u>
Given data a random sample of 300 circuits is tested, revealing 16 defectives.
The proportion of success

Null hypothesis:- H₀ = P ≠0.04
Alternative hypothesis:- H₁ = P =0.04
Q = 1-P = 1-0.04=0.96
Level of significance ∝ =0.05
The test statistic

now substitute all values, we get

on calculation, Z = 1.149
Since the calculated value of Z = 1.149 is less than 1.96 at 5% (0.05) level of significance.
The null hypothesis is accepted .
Hence the proportion is not equal 0.04