Answer:
at time, t = 8 seconds and t = 24 seconds Ferris Wheel be 53 feet above the ground
Step-by-step explanation:
Data provided in the question:
height in feet above ground of a seat on the wheel at time t seconds is
modeled as
h(t) = 
now,
at height 53 above the ground, we get the equation as:
53 = 
or
= 53 - 53
or
= 0
also,
sin(0) = 0
and,
sin(π) = 0
therefore,
= 0
or

or
t = 8 seconds
and,
= π
or
or
or
t = 24 seconds
Hence,
the at time, t = 8 seconds and t = 24 seconds Ferris Wheel be 53 feet above the ground
We know that
The arrangement forms an isosceles triangle with equal legs of 8 miles.
The angle between the legs is equal to

°
Therefore, the other two angles are
Angles = (180-60)/2 = 120/2 = 60°
It can, therefore, be noted that all angles are equal and thus the resulting triangle is actually an equilateral triangle and thus all the sides are equal.
Hence
the answer is
the distance between the two ships is 8 miles apart
alternative Method
Applying the law of cosines
<span>c²=a²+b²-2*a*b*cos C
</span>where
a=8 miles
b=8 miles
C is the angle between the legs-------> 123-63------> 60 degrees
c is the distance between the two ships
so
c²=8²+8²-2*8*8*cos 60------> c²=64-------> c=√64------> c=8 miles
Answer:
45
Step-by-step explanation:
if it has a subtraction or negative dash in front its negative.
Answer
Write an expression for the number of pencils Maggie gives to jamil.
To prove
Let us assume that the number of pencils Katie have = x
As given
Katie gives Maggie half of her pencils.

As given
Maggie keeps 5 and gives the rest to jamil.
Thus

Therefore the expression for the number of pencils Maggie gives to jamil are
.
Answer:
If a+b+c=1,
a
2
+
b
2
+
c
2
=
2
,
a
3
+
b
3
+
c
3
=
3
then find the value of
a
4
+
b
4
+
c
4
=
?
we know
2
(
a
b
+
b
c
+
c
a
)
=
(
a
+
b
+
c
)
2
−
(
a
2
+
b
2
+
c
2
)
⇒
2
(
a
b
+
b
c
+
c
a
)
=
1
2
−
2
=
−
1
⇒
a
b
+
b
c
+
c
a
=
−
1
2
given
a
3
+
b
3
+
c
3
=
3
⇒
a
3
+
b
3
+
c
3
−
3
a
b
c
+
3
a
b
c
=
3
⇒
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
a
b
−
b
c
−
c
a
)
+
3
a
b
c
=
3
⇒
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
(
a
b
+
b
c
+
c
a
)
+
3
a
b
c
=
3
⇒
(
1
×
(
2
−
(
−
1
2
)
+
3
a
b
c
)
)
=
3
⇒
(
2
+
1
2
)
+
3
a
b
c
=
3
⇒
3
a
b
c
=
3
−
5
2
=
1
2
⇒
a
b
c
=
1
6
Now
(
a
2
b
2
+
b
2
c
2
+
c
2
a
2
)
=
(
a
b
+
b
c
+
c
a
)
2
−
2
a
b
2
c
−
2
b
c
2
a
−
2
c
a
2
b
=
(
a
b
+
b
c
+
c
a
)
2
−
2
a
b
c
(
b
+
c
+
a
)
=
(
−
1
2
)
2
−
2
×
1
6
×
1
=
1
4
−
1
3
=
−
1
12
Now
a
4
+
b
4
+
c
4
=
(
a
2
+
b
2
+
c
2
)
2
−
2
(
a
2
b
2
+
b
2
c
2
+
c
2
a
2
)
=
2
2
−
2
×
(
−
1
12
)
=
4
+
1
6
=
4
1
6
Extension
a
5
+
b
5
+
c
5
=
(
a
3
+
b
3
+
c
3
)
(
a
2
+
b
2
+
c
2
)
−
[
a
3
(
b
2
+
c
2
)
+
b
3
(
c
2
+
a
2
)
+
c
3
(
a
2
+
c
2
)
]
=
3
⋅
2
−
[
a
3
(
b
2
+
c
2
)
+
b
3
(
c
2
+
a
2
)
+
c
3
(
a
2
+
b
2
)
]
Now
a
3
(
b
2
+
c
2
)
+
b
3
(
c
2
+
a
2
)
+
c
3
(
a
2
+
b
2
)
=
a
2
b
2
(
a
+
b
)
+
b
2
c
2
(
b
+
c
)
+
c
2
a
2
(
a
+
c
)
=
a
2
b
2
(
1
−
c
)
+
b
2
c
2
(
1
−
a
)
+
c
2
a
2
(
1
−
b
)
=
a
2
b
2
+
b
2
c
2
+
c
2
a
2
−
(
a
2
b
2
c
+
b
2
c
2
a
+
c
2
a
2
b
)
=
−
1
12
−
a
b
c
(
a
b
+
b
c
+
c
a
)
=
−
1
12
−
1
6
⋅
(
−
1
2
)
=
0
So
a
5
+
b
5
+
c
5
=
6
−
0
=
6
Step-by-step explanation: