<u>L</u><u>a</u><u>w</u><u> </u><u>o</u><u>f</u><u> </u><u>E</u><u>x</u><u>p</u><u>o</u><u>n</u><u>e</u><u>n</u><u>t</u>

Compare the terms.

Therefore, a = -2 and n = 3. From the law of exponent above, we receive:

<u>E</u><u>x</u><u>p</u><u>o</u><u>n</u><u>e</u><u>n</u><u>t</u><u> </u><u>D</u><u>e</u><u>f</u><u>.</u> (For cubic)

Factor (-2)^3 out.

(-2) • (-2) = 4 | Negative × Negative = Positive.

4 • (-2) = -8 | Negative Multiply Positive = Negative.

If either denominator or numerator is in negative, it is the best to write in the middle or between numerator and denominators.
Hence,

The answer is - 1 / 8
Since the ratio of sides is 4 to 3, the proportion is:

x =
9

There is one solution to this system of equations. The answer is B.
Cant answer this without giving an equation
Answer:
C, E
Step-by-step explanation:
A. INCORRECT
A is wrong because a reflection across the x-axis DOES move the position of the figure (as it is flipped, so the position changes), but it DOES NOT change the angle (since a shift in position doesn't equal to a change in angle measure)
B. INCORRECT
Although a reflection across the x-axis does change the position of the angle, it DOES NOT change the measure of the angle.
C. CORRECT
A reflection across the x-axis does in fact move the position of the figure and does not change the angle measure. Reflections only deal with flipping a figure, not changing it's shape/distorting it so that the angle will change.
D. INCORRECT
A translation right will change the position of the figure but will not change the measure of the angle.
E. CORRECT
Yes, a translation right WILL change the position of the figure but will NOT change the measure of the angle. This is because a translation is simply moving a figure up and down; it has nothing to do with changing the shape of the figure/distorting it so that the angle is different.