Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.
Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.
Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:
- <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
- <u><em>Reduce the surface roughness of the pipes</em></u>: By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
- <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.
You can learn more about friction losses at
brainly.com/question/13348561
#SPJ4
Answer:
a). TRUE
Explanation:
Thermal efficiency of a system is the defined as the ratio of the net work done to the total heat input to the system. It is a dimensionless quantity.
Mathematically, thermal efficiency is
η = net work done / heat input
While heat rate is the reciprocal of efficiency. It is defined as the ratio of heat supplied to the system to the useful work done.
Mathematically, heat rate is
Heat rate = heat input / net work done
Thus from above we can see that heat rate is the reciprocal of thermal efficiency.
Thus, Heat rate is reciprocal of thermal efficiency.
Answer:
The statement (a) In a non-deterministic FSM, a string is invalid if there is one path not leading to a final state is NOT true
Explanation:
A non-deterministic FSM, contrary to deterministic FSM which has only one possible thread of execution, has multiple threads and for the machine to be invalid, all threads should lead to a none accepting (final) state.
Answer:
a) 1512000 Joules
b) 5040 seconds = 84 minutes = 1.4 hours
Explanation:
a) Power saved by replacing bulbs = 60-18 = 42 W = 42 J/s
Time the bulb is used for = 10 hours
Energy saved during this time
42×10×60×60 = 1512000 Joules
Saved energy by replacing standard incandescent lightbulbs with energy-efficient compact fluorescent lightbulbs in 10 hours is 1512000 Joules
b) Power the plasma TV uses = 300 W = J/s

Time a plasma TV can be used for with the saved energy is 5040 seconds = 84 minutes = 1.4 hours.
Answer:
1700 W
Explanation:
The heat transfer rate P = kA(T - T')/d where k = thermal conductivity of wall = 1.7 W/m-K, A = area of wall = 0.5 m × 1.2 m = 0.6 m², T = temperature of inner surface = 1400 K, T = temperature of outer surface = 1150 K and d = thickness of wall = 0.15 m
So, P = kA(T - T')/d
substituting the values of the variables into the equation, we have
P = 1.7 W/m-K × 0.6 m²(1400 K - 1150 K)/0.15 m
P = 1.7 W/m-K × 0.6 m² × 250 K/0.15 m
P = 255 Wm/0.15 m
P = 1700 W
So, the heat transfer rate through the wall is 1700 W