Answer:

Explanation:
The vessel is modelled after the First Law of Thermodynamics. Let suppose the inexistence of mass interaction at boundary between vessel and surroundings, changes in potential and kinectic energy are negligible and vessel is a rigid recipient.

Properties of water at initial and final state are:
State 1 - (Liquid-Vapor Mixture)





State 2 - (Liquid-Vapor Mixture)





The mass stored in the vessel is:



The heat transfer require to the process is:



Answer:
as soon as there is a design to improve
Explanation:
As a design engineer, I started on the "design improvement" step as soon as I had an initial conceptual design.
__
Then, I started that step again when my boss told me, "make it better."
_____
The more interesting question is, "when do you <em>stop</em> the design improvement step?" (Judging by the constant barrage of software updates, that answer is, "never.")
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes