The heat lost by the metal should be equal to the heat
gained by the water. We know that the heat capacity of water is simply 4.186 J
/ g °C. Therefore:
100 g * 4.186 J / g °C * (31°C – 25.1°C) = 28.2 g * Cp *
(95.2°C - 31°C)
<span>Cp = 1.36 J / g °C</span>
Answer:
Carbon dioxide levels in the Earth's atmosphere have been steadily increasing.
Carbon has a longer average lifetime in the atmosphere.
Explanation:
Today the level of carbon dioxide is higher than at any time in human history. Scientists widely agree that Earth’s average surface temperature has already increased by about 2 F (1 C) since the 1880s, and that human-caused increases in carbon dioxide and other heat-trapping gases are extremely likely to be responsible.
The lifetime in the air of CO2, the most significant man-made greenhouse gas, is probably the most difficult to determine, because there are several processes that remove carbon dioxide from the atmosphere. Between 65% and 80% of CO2 released into the air dissolves into the ocean over a period of 20–200 years.
Answer:
Condensation methods from colloidal particles by aggregation of molecules or ions. Examples of colloids are really in common in evryday life, eg. Mayonnaise, butter, milk, gelatin, paper etc..
Every colloid consists of two parts :colloidal particles and the dispersing medium.
Answer:
sp²
Explanation:
You need to look at how many electron orbitals around the atom. Looking at the structure below, you can see that there are three electron orbitals. This gives you an sp² hybridization.
Answer: Hope this helps
<h3>
Explanation: <u><em>
The fertilized egg zygote divides repeatedly as it moves down the fallopian tube to the uterus. First, the zygote becomes a solid ball of cells. ... Inside the uterus, the blastocyst implants in the wall of the uterus, where it develops into an embryo attached to a placenta and surrounded by fluid-filled membranes.</em></u></h3><h3><u><em /></u></h3>