1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
8

A camera gives a proper exposure when set to a shutter speed of 1/250 s at f-number F8.0. The photographer wants to change the s

hutter speed to 1/1000 s to prevent motion blur. To maintain proper exposure, she should also change the f-number to...? The answer is F4.0.
Physics
1 answer:
Oksana_A [137]3 years ago
5 0

Answer:

F4.0

Explanation:

To obtain a shutter speed of 1/1000 s to avoid any blur motion the f-number should be changed to F4.0 because the light intensity goes up by a factor of 2 when the f-number is decreased by the square root of 2.

You might be interested in
normally a slower moving person would develop less power then a faster moving person. describe a situation in which a slower mov
belka [17]

Answer:

muscle

Explanation:

weight can also be added by muscle. not necessarily fat. so if you have a lot of muscle so that adds weight you can be very powerful but can mover very slow.

4 0
3 years ago
A hard-boiled egg of mass 46.0 gg moves on the end of a spring with force constant 25.6 N/mN/m . The egg is released from rest a
soldi70 [24.7K]

Answer:

0.022kg/s

Explanation:

We are given that

Mass of boiled egg=46 g=\frac{46}{1000} kg=0.046 kg

1kg=1000 g

Constant force=F=25.6 N/m

Initial displacement=A_1=0.296 m

Final displacement=A_2=0.12 m

Time=t=4.55 s

Damping force=F_x=-bv_x

We have to find the  magnitude of damping constant b.

We know that the displacement of the oscillator under damping motion is given by

x=Ae^{-\frac{b}{2m}t}cos(w't+\phi)

For maximum displacement cos(w't+\phi)=1

Therefore , x=A_2

Substitute the values

A_2=A_1e^{-\frac{-b}{2m}t}

e^{-\frac{b}{2m}t}=\frac{A_2}{A_1}

-\frac{b}{2m}t=ln\frac{A_2}{A_1}

lnx=y\implies x=e^y

Substitute the values

-\frac{b}{2\times 0.046}\times 4.55=ln\frac{0.12}{0.296}

\frac{2\times 0.046}{4.55b}=ln\frac{0.296}{0.12}

\frac{2\times 0.046}{4.55}=0.9b

b=\frac{2\times 0.46}{4.55\times 0.9}=0.022kg/s

Hence,the  magnitude of damping constant b=0.022kg/s

3 0
2 years ago
A stone is thrown vertically upward with a speed of 18.0 . (a)How fast is it moving when it reaches a height of 11.0 ? (b)How lo
aliina [53]
For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative. 
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct. 

For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
 </span> 
5 0
2 years ago
A 50 kg runner runs up a flight of stairs. The runner starts out covering 3 steps every second. At the end the runner stops. Thi
nadezda [96]

To solve the problem it is necessary to take into account the concepts of kinematic equations of motion and the work done by a body.

In the case of work, we know that it is defined by,

W = F * d

Where,

F= Force

d = Distance

The distance in this case is a composition between number of steps and the height. Then,

d=h*N, for h as the height of each step and N number of steps.

On the other hand we have the speed changes, depending on the displacement and acceleration (omitting time)

V_f^2-V_i^2 = 2a\Delta X

Where,

V_f = Final velocity

V_i = Initial Velocity

a = Acceleration

\Delta X = Displacement

PART A) For the particular case of work we know then that,

W = F*d

W = m*g*(h*N)

W = 50*9.8*(0.3*30)

W = 4.41kJ

Therefore the Work to do that activity is 4.41kJ

PART B) To find the acceleration (from which we can later find the time) we start from the previously given equation,

V_f^2-V_i^2 = 2a\Delta X

Here,

V_i = \frac{0.3*3}{1} = 0.90m/s\rightarrow3 steps in one second

v_f = 0

Replacing,

V_f^2-V_i^2 = 2a\Delta X

0-0.9^2=2a(30*0.3)

Re-arrange for a,

a = -\frac{0.9^2}{2*30*0.3}

a = -45*10^{-3}m/s^2

At this point we can calculate the time, which is,

t = \frac{\Delta V}{a}

t = \frac{0-0.9}{-45*10^{-3}}

t = 20s

With time and work we can finally calculate the power

P = \frac{W}{t} = \frac{4.41}{20}

P = 0.2205kW

6 0
3 years ago
Need help on this please
Ratling [72]

question 2 answer is ALL OF THE ABOVE

question 3 answer is WARM AND MOIST.

8 0
3 years ago
Other questions:
  • What happens to water when it changes Into ice?
    5·2 answers
  • A car traveling 75 km/h slows down at a constant 0.50 m/s2 just by "letting up on the gas." calculate (a) the distance the car c
    11·1 answer
  • A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of 6.20×105m/s2 for 8.10×10
    10·1 answer
  • As the motor speeds up, the value of current decreases because of A. Friction loss B. Increase in resistance C. Increase in back
    12·1 answer
  • Why was basketball invented?
    7·1 answer
  • In the center of the Milky Way galaxy is a<br> A
    11·2 answers
  • Extra glucose is _____.
    9·2 answers
  • The 75.0 kg hero of a movie is pulled upward with a constant acceleration of 2.00 m/s2 by a rope. What is the tension on the rop
    8·1 answer
  • A car originally at rest reaches 40m/s after accelerating for 50s. Calculate its acceleration
    15·1 answer
  • Write out the preamble that's all so ill give crown if you do
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!