Explanation:
It is given that,
Mass of the rim of wheel, m₁ = 7 kg
Mass of one spoke, m₂ = 1.2 kg
Diameter of the wagon, d = 0.5 m
Radius of the wagon, r = 0.25 m
Let I is the the moment of inertia of the wagon wheel for rotation about its axis.
We know that the moment of inertia of the ring is given by :


The moment of inertia of the rod about one end is given by :

l = r


For 6 spokes, 
So, the net moment of inertia of the wagon is :


So, the moment of inertia of the wagon wheel for rotation about its axis is
. Hence, this is the required solution.
Answer:
Explanation:
Reducing Sliding Friction. You can reduce the resistive force of sliding friction by applying lubrication between the two surfaces in contact, by using rollers, or by decreasing the normal force
Answer:
Explanation:
When 2 gms of steam condenses to water at 100 degree latent heat of vaporization is releases which is calculated as follows
Heat released = mass x latent heat of vaporization
= 2 x 2260 = 4520 J
When 2 gms of water at 100 degree is cooled to ice water at zero degree heat is releases which is calculated as follows
Heat released = mass x specific heat x( 100-0)
= 2 x 4.2 x 100 = 840 J
When 2 gms of water at zero degree condenses to ice at zero degree latent heat of fusion is releases which is calculated as follows
Heat released = mass x latent heat of fusion
= 2 x 334 = 668 J
When 2 grams of steam at 100 degrees Celsius turns to ice at 0 degrees Celsius heat released will be sum of all the heat released as mentioned above ie
4520 + 840 +668 = 6028 J
Answer:
its a solid but can flow
Explanation:
those answers to choose from are wrong