<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>
Answer:
The answer to your question is: V2 = 1 l
Explanation:
Data
P1 = 200 kPa
P2 = 300 kPa
V1 = 1.5 l
V2 = ?
Formula
P1V1 = P2V2
V2 = (P1V1) / P2
V2 = (200 x 1.5) / 300
V2 = 1 l
Answer:
<em> 3980.89 ohms</em>
Explanation:
The capacitive reactance is expressed as;

f is the frequency
C is the capacitance of the capacitor
Given
f = 60H
C = C1+C2 (parallel connection)
C = 15μF + 25μF
C = 40μF
C = 
Substitute into the formula:

<em>Hence the total capacitive reactance is 3980.89 ohms</em>
Answer:50ms-1
Explanation:use the formula v=d/t
in order to find the velocity,devide the distance with time taken.
since distance is 400 meters devide it with seconds whiuch gives us 50.