<span>C. Their direction of motion is south and north. </span>
Answer:
See explanation below
Explanation:
In order to calculate this, we need to use the following expression to get the concentration of the base:
MaVa = MbVb (1)
We already know the volume of NaOH used which is 13.4473 mL. We do not have the concentration of KHP, but we can use the moles. We have the mass of KHP which is 0.5053 g and the molecular formula. Let's calculate the molecular mass of KHP:
Atomic weights of the elements to be used:
K = 39.0983 g/mol; H = 1.0078 g/mol; C = 12.0107 g/mol; O = 15.999 g/mol
MM KHP = (1.0078*5) + (39.0983) + (8*12.0107) + (4*15.999) = 204.2189 g/mol
Now, let's calculate the mole of KHP:
moles = 0.5053 / 204.2189 = 0.00247 moles
With the moles, we also know that:
n = M*V (2)
Replacing in (1):
n = MbVb
Now, solving for Mb:
Mb = n/Vb (3)
Finally, replacing the data:
Mb = 0.00247 / (13.4473/1000)
Mb = 0.184 M
This would be the concentration of NaOH
The answer is 25 grams for this question
Answer : The molecular formula of the compound will be, 
Explanation :
Empirical formula : It is the simplest form of the chemical formula which depicts the whole number of atoms of each element present in the compound.
Molecular formula : it is the chemical formula which depicts the actual number of atoms of each element present in the compound.
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is :

As we are given that the empirical formula of a compound is
and the molar mass of compound is, 90.09 gram/mol.
The empirical mass of
= 1(12) + 2(1) + 1(16) = 30 g/eq


Molecular formula = 
Thus, the molecular formula of the compound will be, 
Answer:
B. increase the distance between the objects
Explanation:
A) increase the mass of one of the objects