Answer:
The flow rate of a tube is the volume of fluid flowing through the tube per unit time. The flowrate is proportional to the product of the velocity of the fluid through the tube, and the cross-sectional area of the tube.
That is
Q = AV
where
A is the area of the tube
V is the velocity of the tube
The cross-sectional area of the tube is proportional to the radius of the tube. From the above equation, we can deduce that if the velocity of the fluid flowing through the tube is held constant, the flowrate of the fluid through the tube will increase with an increase in the radius of the tube, and it will decrease with a decrease in the radius of the tube.
Answer: An atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Explanation:
Kinetic energy is the energy acquired by an object due to its motion. And, thermal energy is the internal energy of an object arisen because of the kinetic energy present within the molecules of the object.
Potential energy is the energy acquired by an object due to its position.
The total energy present at the center of mass of an object is known as mass-energy.
So, when an atom gets excited then it means it is gaining kinetic energy due to which it moves from its initial position after getting excited.
Thus, we can conclude that an atom in an excited state contains more of kinetic energy than the same atom in the ground state.
Answer:
The key difference between empirical and molecular formulas is that an empirical formula only gives the simplest ratio of atom whereas a molecular formula gives the exact number of each atom in a molecule.