Answer:
A. fluorine, 1.79 moles
Explanation:
Given parameters:
Mass of carbon = 87.7g
Mass of fluorine gas = 136g
Unknown:
The limiting reactant and the maximum amount of moles of carbon tetrafluoride that can be produced = ?
Solution:
Equation of the reaction:
C + 2F₂ → CF₄
let us find the number of the moles the given species;
Number of moles =
C; molar mass = 12;
Number of moles =
= 7.31moles
F; molar mass = 2(19) = 38g/mol
Number of moles =
= 3.58moles
So;
From the give reaction:
1 mole of C requires 2 moles of F₂
7.31 moles of C will then require 2 x 7.31 moles of F₂ = 14.62moles
But we have 3.58 moles of the F₂;
Therefore, the reactant in short supply is F₂ and it is the limiting reactant;
So;
2 moles of F₂ will produce mole of CF₄
3.58 moles of F₂ will then produce
= 1.79moles of CF₄
Answer:
Option b. Decomposition
Followed by a reduction process using charcoal
Explanation:
Lead can be obtained from lead nitrate by thermal decomposition of lead nitrate as shown below:
2Pb(NO3)2 —> 2PbO + 4NO2 + O2
The PbO obtained is reduced by charcoal(C) to obtain the metallic Pb as shown below:
2PbO + C —> Pb + CO2
Answer: an invisible line around which an object rotates, or spins.
Explanation: //Give thanks(and or Brainliest) if helpful (≧▽≦)//
Answer:
Option a is the right one
Explanation:
Redox reactions are defined as the reactions where one element is oxidized (so the oxidation state is increased); and another element is reduced (oxidation state decreases). These changes in the oxidations states are defined by a transference of electrons.
When the oxidation state decrease → reduction → the element gains electrons
When the oxidation state increase → oxidation → the element release electrons