The answer is the option d. metabolism.
Metabolism is the set of the chemical reactions that happens in the organism to transform nutrients (food) in energy and the products that conform the cells and all the constituents of the body.
It is actually something standardized more so than theoretical, however in terms of atoms in general the electrons are based on the amount of electronic shells that an atom has and the amount of electrons that atom can accommodate. In the case of sodium, it has three shells with 2 electrons on the first shell which is the maximum, 8 on the second shell which is also the max and 1 on their final shell
So simply put an ATOM of Sodium (Na) has 23 electrons because it has 23 protons which is a fact
<span />
Answer:
The simplified expression for the fraction is 
Explanation:
From the given information:
O3* → O3 (1) fluorescence
O + O2 (2) decomposition
O3* + M → O3 + M (3) deactivation
The rate of fluorescence = rate of constant (k₁) × Concentration of reactant (cO)
The rate of decomposition is = k₂ × cO
The rate of deactivation = k₃ × cO × cM
where cM is the concentration of the inert molecule
The fraction (X) of ozone molecules undergoing deactivation in terms of the rate constants can be expressed by using the formula:



since cM is the concentration of the inert molecule
The formula for the self ionization of water is 2H₂O(l)⇄H₃O⁺(aq)+OH⁻(aq)
The hydronium (H₃O⁺) is usually just referred to as a hydrogen ion or a proton (H⁺) and hydroxide (OH⁻) doesn't have another name that I am aware of. These ions do stay in solution. However the concentrations are really small and the equilibrium constant (K(w)) is 1×10⁻¹⁴.
I hope this helps. Let me know if anything is unclear.