Answer:
carbon because organic compounds are made up of hydrogen and carbon
Answer: Luster (happy to help)
Explanation: Luster is the property of minerals that indicates how much the surface of a mineral reflects light.
Answer:
27.60 g urea
Explanation:
The <em>freezing-point depression</em> is expressed by the formula:
In this case,
- ΔT = 5.6 - (-0.9) = 6.5 °C
m is the molality of the urea solution in X (mol urea/kg of X)
First we<u> calculate the molality</u>:
- 6.5 °C = 7.78 °C kg·mol⁻¹ * m
Now we<u> calculate the moles of ure</u>a that were dissolved:
550 g X ⇒ 550 / 1000 = 0.550 kg X
- 0.84 m = mol Urea / 0.550 kg X
Finally we <u>calculate the mass of urea</u>, using its molecular weight:
- 0.46 mol * 60.06 g/mol = 27.60 g urea
Answer:
pH= 9.2
Explanation:
Henderson hasselbach equation
pKa= log Ka= log (4.9 x 10^-10)=9.3
![pH=Pka+log \frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=pH%3DPka%2Blog%20%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
![pH=9.3+log \frac{[CN-]}{[HCN]}](https://tex.z-dn.net/?f=pH%3D9.3%2Blog%20%5Cfrac%7B%5BCN-%5D%7D%7B%5BHCN%5D%7D)
![pH=9.3+log \frac{[0.64 M]}{[0.83 M]}](https://tex.z-dn.net/?f=pH%3D9.3%2Blog%20%5Cfrac%7B%5B0.64%20M%5D%7D%7B%5B0.83%20M%5D%7D)
pH= 9.2
Explanation:
The mass of bromine is 79.904, and since there are two of them in the Calcium Bromide molecule, we'll multiply it by 2 to get 159.808. Dividing that by the full mass of the molecule then multiply it by 100 will give you the answer.