<span>the lithosphere, which contains all of the cold, hard, solid rock of the planet's crust (surface), the hot semi-solid rock that lies underneath the crust, the hot liquid rock near the center of the planet, and the solid iron core (center) of the planet </span>the hydrosphere, which contains all of the planet's solid, liquid, and gaseous water,and the atmosphere, which contains all of the planet's air
Answer:
0.56M of acetate ions
Explanation:
Given parameters:
Mass of Ba(C₂H₃O₂)₂ = 69g
Volume of water = 970mL = 0.97dm³
Molar mass of Ba(C₂H₃O₂)₂ = 255.415g/mol
Unknown:
Concentration of acetate ion in the final solution = ?
Solution:
Let us represent the dissociation;
Ba(C₂H₃O₂)₂ = Ba²⁺ + 2C₂H₃OO⁻
We see that 1M of will produce 2M of acetate ions
Now, let us find the molarity of the barium acetate;
Molarity = 
Number of moles of Ba(C₂H₃O₂)₂ = 
Number of moles =
= 0.27moles
Molarity of Ba(C₂H₃O₂)₂ =
= 0.28M
since 1M of Ba(C₂H₃O₂)₂ will produce 2M of acetate ions
0.28M of Ba(C₂H₃O₂)₂ will produce 2 x 0.28 = 0.56M of acetate ions
Energy, potential energy, is stored in the covalent bonds holding atoms together in the form of molecules. This is often called chemical energy. Except at absolute zero (the coldest temperature it is possible to reach), all molecules move.
Answer:
heat rate= 1281W
length = 15.8m
Explanation:
we have this data to answer this question with
Tmi = 85 degrees
Tmo = 35 degrees
Ts = 25 dgrees
flow rate = 25 degrees
using engine oil property from table a-5
Tm = Tmo - TMi/2 = 333k
u =0.522x10⁻²
k = 0.26
pr = 51.3
cp = 2562 J/kg.k
mcp(Tmo-Tmi) =
0.01 x 2562(35-85)
= 1281 W
we find the change in Tim
= [(35-25)-(85-25)]/ln[(35-25)/(85-25)]
= -50/ln0.167
= -50/-1.78976
= 27.9°c
we finf the required reynold number
4x0.01/πx0.003x0.522x10⁻²
= 0.04/0.00004921
= 812.8
= 813
we find approximate correlation
NuD = hd/k
NuD = 3.66
3.66 = 0.003D/0.26
cross multiply
0.003D = 3.66x0.26
D = 3.66x0.26/0.003
= 317.2
As = 1281/317x27.9
= 0.145
As = πDL
L = As/πD
= 0.145/π0.003
= 0.145/0.009429
L = 15.378
Ice cubes are made of water which has undergone freezing, which made it into ice. Both ice cubes and water have the same properties. But in this case, when ice and water are mixed, it is considered a heterogeneous mixture and not homogeneous. Why? Going back to the definition of what a heterogeneous mixture is, this mixture shows a visible difference of difference phases or substances. In the ice and water mixture, it is obviously seen that ice is solid, and water is liquid.