Answer:
a) ![P(X](https://tex.z-dn.net/?f=%20P%28X%20%3C8%29%3D%20F%288%29%20%3D%5Cfrac%7B8%7D%7B20%7D%3D%200.4)
![P(X>14) = 1-P(X](https://tex.z-dn.net/?f=P%28X%3E14%29%20%3D%201-P%28X%3C14%29%20%3D%201-F%2814%29%20%3D%201-%5Cfrac%7B14%7D%7B20%7D%3D%200.3)
b) ![P(7< X](https://tex.z-dn.net/?f=%20P%287%3C%20X%3C11%29%3D%20F%2811%29%20-F%287%29%20%3D%20%5Cfrac%7B11%7D%7B20%7D%20-%5Cfrac%7B7%7D%7B20%7D%3D%200.55-0.35%3D0.20)
c) We want to find a value c who satisfy this condition:
![P(x](https://tex.z-dn.net/?f=%20P%28x%3Cc%29%20%3D%200.9)
And using the cumulative distribution function we have this:
![P(x](https://tex.z-dn.net/?f=P%28x%3Cc%29%20%3D%20F%28c%29%20%3D%20%5Cfrac%7Bc-0%7D%7B20-0%7D%20%3D0.9)
And solving for c we got:
![c = 20*0.9 = 18](https://tex.z-dn.net/?f=%20c%20%3D%2020%2A0.9%20%3D%2018)
Step-by-step explanation:
For this case we define the random variable X as he amount of time (in minutes) that a particular San Francisco commuter must wait for a BART train, and we know that the distribution for X is given by:
![X \sim Unif (a=0, b =20)](https://tex.z-dn.net/?f=%20X%20%5Csim%20Unif%20%28a%3D0%2C%20b%20%3D20%29)
Part a
We want this probability:
![P(X](https://tex.z-dn.net/?f=%20P%28X%20%3C8%29)
And for this case we can use the cumulative distribution function given by:
![F(x) = \frac{x-a}{b-a} = \frac{x-0}{20-0}= \frac{x}{20}](https://tex.z-dn.net/?f=%20F%28x%29%20%3D%20%5Cfrac%7Bx-a%7D%7Bb-a%7D%20%3D%20%5Cfrac%7Bx-0%7D%7B20-0%7D%3D%20%5Cfrac%7Bx%7D%7B20%7D)
And using the cumulative distribution function we got:
![P(X](https://tex.z-dn.net/?f=%20P%28X%20%3C8%29%3D%20F%288%29%20%3D%5Cfrac%7B8%7D%7B20%7D%3D%200.4)
For the probability
if we use the cumulative distribution function and the complement rule we got:
![P(X>14) = 1-P(X](https://tex.z-dn.net/?f=P%28X%3E14%29%20%3D%201-P%28X%3C14%29%20%3D%201-F%2814%29%20%3D%201-%5Cfrac%7B14%7D%7B20%7D%3D%200.3)
Part b
We want this probability:
![P(7< X](https://tex.z-dn.net/?f=%20P%287%3C%20X%3C11%29)
And using the cdf we got:
![P(7< X](https://tex.z-dn.net/?f=%20P%287%3C%20X%3C11%29%3D%20F%2811%29%20-F%287%29%20%3D%20%5Cfrac%7B11%7D%7B20%7D%20-%5Cfrac%7B7%7D%7B20%7D%3D%200.55-0.35%3D0.20)
Part c
We want to find a value c who satisfy this condition:
![P(x](https://tex.z-dn.net/?f=%20P%28x%3Cc%29%20%3D%200.9)
And using the cumulative distribution function we have this:
![P(x](https://tex.z-dn.net/?f=P%28x%3Cc%29%20%3D%20F%28c%29%20%3D%20%5Cfrac%7Bc-0%7D%7B20-0%7D%20%3D0.9)
And solving for c we got:
![c = 20*0.9 = 18](https://tex.z-dn.net/?f=%20c%20%3D%2020%2A0.9%20%3D%2018)