Answer:

Explanation:
Hello there!
Unfortunately, the question is not given in the question; however, it is possible for us to compute the equilibrium constant as the problem is providing the concentrations at equilibrium. Thus, we first set up the equilibrium expression as products/reactants:
![K=\frac{[NO_2]^2}{[NO]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BNO%5D%5E2%5BO_2%5D%7D)
Then, we plug in the concentrations at equilibrium to obtain the equilibrium constant as follows:

In addition, we can infer this is a reaction that predominantly tends to the product (NO2) as K>>>>1.
Best regards!
The average rate of reaction over a given interval can be calculated by taking the difference of concentration on a particular given reactant, and dividing it by the total time. In this case, (1.00 M - 0.655 M)/30 s = 0.0115 M/s, or 0.0115 mol/L-s, and this is the final rate of reaction.
Answer:
Explanatio
NCO2= 0, 248 /44= 0 ,005636
VCO2= 0,005636* 22,4= 0 ,126254545
Answer:
atoms are too small to be seen under a microscope
Explanation:
scientists have been always making research on atomic structure which cannot be directly looked through a microscope