The correct answer is option c
Answer:
6.82 g H₂S
General Formulas and Concepts:
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
0.200 mol H₂S
<u>Step 2: Identify Conversions</u>
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:
- Multiply:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
6.818 g H₂S ≈ 6.82 g H₂S
Answer:
a. A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.
Explanation:
The change in free energy (ΔG) that is, the <u>energy available to do work</u>, of a system for a constant-temperature process is:
-
When ΔG < 0 the reaction is spontaneous in the forward direction.
- When ΔG > 0 the reaction is nonspontaneous. The reaction is
spontaneous in the opposite direction.
- When ΔG = 0 the system is at equilibrium.
If <u>both ΔH and ΔS are positive</u>, then ΔG will be negative only when the TΔS term is greater in magnitude than ΔH. This condition is met when T is large.