Answer:
if I am going to answer I need the set up
Explanation:
please show the set up and I will answer the question
Answer:
ΔH =
Explanation:
In a calorimeter, when there is a complete combustion within the calorimeter, the heat given off in the combustion is used to raise the thermal energy of the water and the calorimeter.
The heat transfer is represented by
= 
where
= the internal heat gained by the whole calorimeter mass system, which is the water, as well as the calorimeter itself.
= the heat of combustion
Also, we know that the total heat change of the any system is
ΔH = ΔQ + ΔW
where
ΔH = the total heat absorbed by the system
ΔQ = the internal heat absorbed by the system which in this case is 
ΔW = work done on the system due to a change in volume. Since the volume of the calorimeter system does not change, then ΔW = 0
substituting into the heat change equation
ΔH =
+ 0
==> ΔH =
not sure.. you should eat poptarts
Answer:
see explaination
Explanation:
We are given the (R)-3-bromo-2,3-dimethylpentane and asking to draw the curved arrow which is the showing the mechanism for first-order substitution and first-order elimination reactions. We know the formation of carbocation is the rate determining step in the first-order substitution and first-order elimination reactions.
So in the (R)-3-bromo-2,3-dimethylpentane there is –Br gets removed and formed the tertiary carbocation which is more stable, so the curved arrows in Box 1 to depict the flow of electrons and intermediate in Box 2.
Check attachment
<span>Answer
is: mass of burned butane is 11.6 g.</span>
Chemical reaction: 2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O.
m(butane)
= 50,0 g.
<span>
V(CO</span>₂) = 17,9 L.<span>
n(CO</span>₂) = V(CO₂) ÷
Vm.<span>
n(CO</span>₂) = 17,9 L ÷ 22,4 L/mol.<span>
n(CO</span>₂) = 0,8 mol.<span>
From chemical reaction n(CO</span>₂) :
n(C₄H₁₀) = 8 : 2.<span>
n(C</span>₄H₁₀) =
0,8 mol ÷ 4.<span>
n(C</span>₄H₁₀) =
0,2 mol.<span>
m(C</span>₄H₁₀) =
n(C₄H₁₀) · M(C₄H₁₀).<span>
m(C</span>₄H₁₀) =
0,2 mol · 58 g/mol.<span>
m(C</span>₄H₁₀) =
11,6 g.