First, we write the half equations for the reduction of the chemical species present:
Cu⁺² + 2e → Cu; E° = 0.34 V
Ni⁺² + 2e → Ni; E° = - 0.23 V
In order to determine the potential of the cell, we find the difference between the two values. For this:
E(cell) = 0.34 - (-0.23)
E(cell) = 0.57 V
The second option is correct. (The difference in values is due to different values in literature, and it is negligible)
M = n/V
.5M = n/.100 L
n = .1 L * .5M
n= .05 mols of MgCl2
mass of MgCl2 = .05 mols of MgCl2 * 95.211 grams/ 1 mol of MgCl2
mass of MgCl2 = 4.76 grams
4.76 grams of MgCl2 is needed to make 100 ml of a solution that is .500M, in chloride ion. Bolded = confused
Answer:
- <u>Yes,</u> <em>all titrations of a strong base with a strong acid have the same pH at the equivalence point.</em>
This <u>pH is 7.</u>
Explanation:
<em>Strong acids</em> and <em>strong bases</em> ionize completely in aqueous solutions. The ionization of strong acids produce hydronium ions, H₃O⁺, and the ionization of strong bases produce hydroxide ions, OH⁻.
Since the ionization of strong acids and bases progress until completion, there is not reverse reaction.
The definition of pH is pH = - log [H₃O⁺]. Acids have low pH (below 7, and greater than 0) and bases have high pH (above 7 and less than 14). Neutral solutions have pH = 7.
Acid-base titrations are a method to determine the concentration of an acid from the known concentration of a base, or the concentraion of a base from the known concentration of an acid.
The<em> equivalence point</em> of the titration is the point at which the the number of moles of hydronium ions and hydroxide ions are equal.
Then, at that point, the hydronium and hydroxide ions will be in the stoichiometric proportion to form a neutral solution, i.e. the pH of the solution wiill be 7.
A word equation is a chemical reaction described using words.
A common example is the act of photosynthesis - the process plants use to make glucose (sugar) to use as 'food'.
Plants convert water and carbon dioxide into oxygen and glucose.
A word equation to express this is:
Water + Carbon Dioxide → Glucose + Oxygen
The other type of equation is a symbol equation - this uses the symbols of the elements instead of the common names:
H₂O + CO₂ → C₆H₁₂O₆ + O₂
There is also a balanced version:
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
<em>If you want information on the balanced symbol equations, feel free to PM me.</em>
Answer:
HELLO THERE!
I HOPE MY ANSWER WILL HELP YOU :)
Explanation:
PLEASE NOTE; I HAVE WRITTEN THE ATOMIC NUMBER IN BRACKETS, NEXT TO THE SYMBOL OF THE ELEMENT