It would help if you had a four quadrant graph, but the distance would be (8,11).
Answer:
Step-by-step explanation:
If you call "5x-2x^2+1" an "equation," then you must equate 5x-2x^2+1 to 0:
5x-2x^2+1 = 0
This is a quadratic equation. Rearranging the terms in descending order by powers of x, we get:
-2x^2 + 5x + 1 = 0. Here the coefficients are a = -2, b = 5 and c = 1.
Use the quadratic formula to solve for x:
First find the discriminant, b^2 - 4ac: 25 - 4(-2)(1) = 25 + 8 = 33
Because the discriminant is positive, the roots of this quadratic are real and unequal.
-b ± √(discriminant)
Applying the quadratic formula x = --------------------------------
2a
we get:
-5 ± √33 -5 + √33
x = ----------------- = --------------------- and
2(-2) -4
-5 - √33
---------------
-4
Answer:
Radius =6.518 feet
Height = 26.074 feet
Step-by-step explanation:
The Volume of the Solid formed = Volume of the two Hemisphere + Volume of the Cylinder
Volume of a Hemisphere 
Volume of a Cylinder 
Therefore:
The Volume of the Solid formed

Area of the Hemisphere =
Curved Surface Area of the Cylinder =
Total Surface Area=

Cost of the Hemispherical Ends = 2 X Cost of the surface area of the sides.
Therefore total Cost, C

Recall: 
Therefore:

The minimum cost occurs at the point where the derivative equals zero.


![-27840+32\pi r^3=0\\27840=32\pi r^3\\r^3=27840 \div 32\pi=276.9296\\r=\sqrt[3]{276.9296} =6.518](https://tex.z-dn.net/?f=-27840%2B32%5Cpi%20r%5E3%3D0%5C%5C27840%3D32%5Cpi%20r%5E3%5C%5Cr%5E3%3D27840%20%5Cdiv%2032%5Cpi%3D276.9296%5C%5Cr%3D%5Csqrt%5B3%5D%7B276.9296%7D%20%3D6.518)
Recall:

Therefore, the dimensions that will minimize the cost are:
Radius =6.518 feet
Height = 26.074 feet
17.154 < 17.15 is incorrect.
17.15 is 17.150 which is less than 17.154 not greater than.
A.
10.50 divided by 2 is 5.25. meaning that each ticket is 5.25