Answer:
Step-by-step explanation:
<h3>Part B</h3>
Assumed the dimensions of the top and bottom parts are identical.
Since the cylindrical part has total height of 1.8 cm and the hemisphere volume is transferred to bottom part and the cone part is still full, the value of h is the difference of the total height of cylinder and full part of the top section of cylinder:
- h = 1.8 cm - 0.3 cm = 1.5 cm
<h3>Part C</h3>
Find the volume of sand in the bottom part. It consists of a hemisphere and a cylinder of 1.5 cm height.
- V(cylinder) = πr²h = 3.14*(2.6/2)²*1.5 ≈ 7.96 cm³
- V(hemisphere) = 2/3πr³ = 2/3*3.14*(2.6/2)³ ≈ 4.6 cm³
<u>Total sand in the bottom part:</u>
<u>Time taken:</u>
- 12.56 / 0.05 = 251.2 seconds = 4 min 11.2 seconds
For this question you can say:
1/2 = 8/16
so now you can add easily:
9/16 + 8/16 = 17/16 and that's the simplest fraction but you can also say:
17/16 = 1.0625 :)))
i hope this is helpful
have a nice day
Answer:
128
Step-by-step explanation:
Method A.
The volume of the prism is 2 cubic units.
Each cube has side length of 1/4 unit.
The volume of each cube is (1/4)^3 cubic unit.
The volume of each cube is 1/64 cubic unit.
To find the number of cubes that fit in the prism, we divide the volume of the prism by the volume of one cube.
(2 cubic units)/(1/64 cubic units) =
= 2/(1/64)
= 2 * 64
= 128
Method B.
Imagine that the prism has side lengths 1 unit, 1 unit, and 2 units (which does result in a 2 cubic unit volume.) Since each cube has side length 1/4 unit, then you can fit 4 cubes by 4 cubes by 8 cubes in the prism. Then the number of cubes is: 4 * 4 * 8 = 128
Answer:
x = 5/2 , y = -7/2
Step-by-step explanation:
<em>r's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>finding</em><em> </em><em>midpoint</em><em> </em><em>=</em><em>.</em><em>(</em><em> </em><em>X1</em><em> </em><em>+</em><em> </em><em>X</em><em>2/</em><em>)</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>(</em><em>Y1+</em><em>Y2)</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> </em><em>the </em><em>value</em><em> </em><em>of </em><em>in </em><em>formula</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>x=</em><em> </em><em> </em><em>4</em><em>+</em><em>1</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>1</em><em>-</em><em>6</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>7</em><em>/</em><em>2</em>
<em>hope</em><em> it</em><em> helps</em>
I = prt
where i = interest, p = principal, r = interest rate, t = time
i = $1500 * 0.07 * 1.5
i = $157.5