Answer:
Average :
UCL = 4.15
LCL = 2.65
Range :
UCL = 2.75
LCL = 0
Explanation:
Given :
Sample size, n = 5
Average, X = 3.4
Range, R = 1.3
A2 for n = 5 ; equals 0.577 ( X chart table)
For the average :
Upper Control Limit (UCL) :
X + A2*R
3.4 + 0.577(1.3) = 4.1501
Lower Control Limit (LCL) :
X - A2*R
3.4 - 0.577(1.3) = 2.6499
FOR the range :
Upper Control Limit (UCL) :
UCL = D4*R
D4 for n = 5 ; equals = 2.114
UCL = 2.114*1.3 = 2.7482
Lower Control Limit (LCL) :
LCL = D3*R
D3 for n = 5 ; equals = 0
LCL = 0 * 1.3 = 0
Answer:
a) from the hotter object to the cooler object
Explanation:
temperature moves by conduction, which is associated with the movement of atoms or molecules and the always move from hight temperatures to lower temperatures to attain thermal equilinrium of the system.
so when two objects are placed together and have different temperatures then the system is not in thermal equilibrium and to attain it, temperature can only move to coller object and not from the coller object according to thermodynamics.
Answer:
The x component of the resultant force is -7.27N.
Explanation:
To obtain the x component of the resultant force, first we have to know the x components of the other forces. To do this, we just have to do some trigonometry:

Since both vectors are in the left side of the y-axis, they have a negative x component. So:

Finally, we sum both components to obtain the component of the resultant force:

In words, the x component of the resultant force is -7.27N.
- According to Newton's Third Law of Motion, to every action, there is an equal and opposite reaction; action and reaction act on different bodies.
- Here, the action force is in the leftward direction, so the reaction will be in the opposite direction.
- If the action force is the swimmer pushing water in the leftward direction, then the reaction force is in the rightward direction.
- And the reaction force will be given by the water on the swimmer.
<u>Answer</u><u>:</u>
<u>The </u><u>reaction </u><u>force </u><u>is </u><u>the </u><u>water </u><u>pushing </u><u>the </u><u>swimmer </u><u>in </u><u>the </u><u>rightward </u><u>direction</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.