Answer:
Einstein extended the rules of Newton for high speeds. For applications of mechanics at low speeds, Newtonian ideas are almost equal to reality. That is the reason we use Newtonian mechanics in practice at low speeds.
Explanation:
<em>But on a conceptual level, Einstein did prove Newtonian ideas quite wrong in some cases, e.g. the relativity of simultaneity. But again, in calculations, Newtonian ideas give pretty close to correct answer in low-speed regimes. So, the numerical validity of Newtonian laws in those regimes is something that no one can ever prove completely wrong - because they have been proven correct experimentally to a good approximation.</em>
The current is defined as the amount of charge transferred through a certain point in a certain time interval:

where
I is the current
Q is the charge

is the time interval
For the lightning bolt in our problem, Q=6.0 C and

, so the average current during the event is
Answer:a. 24 kg m/s
b. 3/5s
Explanation:
a.impulse is the change in momentum so at first the momentum is zero because the ball was at rest and the final momentum is 1.2kg*20m/s=24 kg m/s
so the impulse would be (24-0) kg m/s=24 kg m/s
b. so the impulse equation is impulse is force *delts time
so 24 kg m/s=40N*t
t=24 kg m/s /40N=3/5 s