The sprinter’s average acceleration is 1.98 m/s²
The given parameters;
- initial velocity of the sprinter, u = 18 km/h
- final velocity of the sprinter, v = 27 km/h
- time of motion of the sprinter, t = 3.5 x 10⁻⁴ h
Convert the velocity of the sprinter to m/s;

The time of motion is seconds;

The sprinter’s average acceleration is calculated as follows;

Thus, the sprinter’s average acceleration is 1.98 m/s²
Learn more here:brainly.com/question/17280180
Answer:
The car has velocity and acceleration but is not decelerating
Explanation:
Since the car is traveling at 25 mph around the curve, it has a tangential velocity. This tangential velocity is constantly changing in direction (so the car could adapt to the curve and not moving forward in a straight line), there should be a centripetal acceleration in play here. This acceleration does not slow down the car so it's not decelerating.
Answer:

Explanation:
Assuming the we have to find ratio maximum forces on the mass in each case
we know that in a spring mass system
F= Kx
K= spring constant
x= spring displacement
Case 1:

case 2:

therefore, 

Answer:
1000 cm.
Explanation:
To obtain the estimated tree height :
(Height of rod / length of rod shadow) = (height of tree / length of tree shadow)
Substituting values into the formula :
(150cm / 120 cm) = (height of tree / 800 cm)
Using cross multiplication :
Height of tree * 120 = 150 * 800
Height of tree = (150 * 800) / 120
Height of tree = 120,000 / 120
Height of tree = 1000
Hence, estimate height of tree = 1000 cm