1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
3 years ago
13

Describe what it means to view something from a frame of reference.Give an example to illustrate your explanation.

Physics
1 answer:
Roman55 [17]3 years ago
8 0

like just try and try you gut it just trust me I'm a Wuman and you a man

You might be interested in
A 2000 kg car moves along a horizontal road at speed vo
cluponka [151]

Answer:

The shortest possible stopping distance of the car is 175.319 meters.

Explanation:

In this case we see that driver use the brakes to stop the car by means of kinetic friction force. Deceleration of the car is directly proportional to kinetic friction coefficient and can be determined by Second Newton's Law:

\Sigma F_{x} = -\mu_{k}\cdot N = m \cdot a (Eq. 1)

\Sigma F_{y} = N-m\cdot g = 0 (Eq. 2)

After quick handling, we get that deceleration experimented by the car is equal to:

a = -\mu_{k}\cdot g (Eq. 3)

Where:

a - Deceleration of the car, measured in meters per square second.

\mu_{k} - Kinetic coefficient of friction, dimensionless.

g - Gravitational acceleration, measured in meters per square second.

If we know that \mu_{k} = 0.0735 and g = 9.807\,\frac{m}{s^{2}}, then deceleration of the car is:

a = -(0.0735)\cdot (9.807\,\frac{m}{s^{2}} )

a = -0.721\,\frac{m}{s^{2}}

The stopping distance of the car (\Delta s), measured in meters, is determined from the following kinematic expression:

\Delta s = \frac{v^{2}-v_{o}^{2}}{2\cdot a} (Eq. 4)

Where:

v_{o} - Initial speed of the car, measured in meters per second.

v - Final speed of the car, measured in meters per second.

If we know that v_{o} = 15.9\,\frac{m}{s}, v = 0\,\frac{m}{s} and a = -0.721\,\frac{m}{s^{2}}, stopping distance of the car is:

\Delta s = \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(15.9\,\frac{m}{s} \right)^{2}}{2\cdot \left(-0.721\,\frac{m}{s^{2}} \right)}

\Delta s = 175.319\,m

The shortest possible stopping distance of the car is 175.319 meters.

8 0
3 years ago
This is my first question don’t really know how to use this app yet lol but somebody answer it for me pls!! Seded the corredare
miskamm [114]
3x6



(This just for extras )
7 0
3 years ago
A force of 12 N changes the momentum of a toy car from 3kgm/s t0 10kgm/s. Calculate the time the force took to produce this chan
yan [13]

Answer:

Time = 0.58 seconds

Explanation:

Given the following data;

Initial momentum = 3 kgm/s

Final momentum = 10 kgm/s

Force = 12 N

To find the time required for the change in momentum;

First of all, we would determine the change in momentum.

Change \; in \; momentum = final \; momentum - initial \; momentum

Change \; in \; momentum = 10 - 3

Change in momentum = 7 kgm/s

Now, we can find the time required;

Note: the impulse of an object is equal to the change in momentum experienced by the object.

Mathematically, impulse (change in momentum) is given by the formula;

Impulse = force * time

Making "time" the subject of formula, we have;

Time = \frac {impulse}{force}

Substituting into the formula, we have;

Time = \frac {7}{12}

Time = 0.58 seconds

6 0
3 years ago
Two identical cylindrical vessels with their bases at the same level each contain a liquid of density 1.23 g/cm3. The area of ea
motikmotik

Explanation:

Work done by gravity is given by the formula,

           W = \rho A (h_{1} - h)g (h - h_{2}) ......... (1)

It is known that when levels are same then height of the liquid is as follows.

           h = \frac{h_{1} + h_{2}}{2} ......... (2)

Putting value of equation (2) in equation (1) the overall formula will be as follows.

       W = \frac{1}{4} \rho gA(h_{1} - h_{2})^{2})

           = \frac{1}{4} \times 1.23 g/cm^{3} \times 9.80 m/s^{2} \times 3.89 \times 10^{-4} m^{2}(1.76 m - 0.993 m)^{2})

           = 0.689 J

Thus, we can conclude that the work done by the gravitational force in equalizing the levels when the two vessels are connected is 0.689 J.

3 0
3 years ago
Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of oneâs birth. The on
Anton [14]

Answer:

Explanation:

Gravitational force between two objects having mass m₁ and m₂ at a distance R

F = G m₁ m₂ / R²

Force between baby and father F₁ = 6.67x10⁻¹¹ x 4.1 x 120 / .18²

= 1.01 x 10⁻⁶ N

b )

Force between baby and Jupiter

F₂ = 6.67x10⁻¹¹ x 1.9x 10²⁷ x 4.1 / ( 6.29 x 10¹¹ )²

= 1.31 x 10⁻⁶  N

c )

Ratio = 1.01 / 1.31

= .77

4 0
3 years ago
Other questions:
  • Which most likely could cause acceleration? Check all that apply.
    7·1 answer
  • How much energy in calories does it take to melt 10 grams of ice?
    5·2 answers
  • You are driving at the speed of 27.7 m/s (61.9764 mph) when suddenly the car in front of you (previously traveling at the same s
    8·2 answers
  • Which equation represents a neutralization reaction?
    10·1 answer
  • What is net displacement vector? I just started AP Physics 1.
    9·2 answers
  • The place kicker on a football team kicks a ball from ground level with an initial speed of 4.00 m/s at an angle of 29.0° above
    15·1 answer
  • What accommodations can be made for people with impaired vision?
    8·1 answer
  • At
    8·1 answer
  • Which disease or disorder affects the lower respiratory system? Tuberculosis, laryngitis, sinus-itis, the common cold.
    8·2 answers
  • We can only tell the earth is rotating almost 960 miles an hour if we
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!