Answer:
Mole fraction H₂O → 0.72
Mole fraction C₂H₅OH → 0.28
Explanation:
By the mass of the two elements in the solution, we determine the moles of each:
25 g . 1 mol/ 18g = 1.39 moles of water (solute)
25 g . 1 mol / 46 g = 0.543 moles of ethanol (solvent)
Mole fraction solute = Moles of solute / Total moles
Mole fraction solvent = Moles of solvent / Total moles
Total moles = Moles of solute + Moles of solvent
1.39 moles of solute + 0.543 moles of solvent = 1.933 moles → Total moles
Mole fraction H₂O = 1.39 / 1.933 → 0.72
Mole fraction C₂H₅OH= 0.543 / 1.933 → 0.28
Remember that sum of mole fractions = 1
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
The metric system goes by powers of ten, so it's very easy to measure. That would be the main advantage, measurements of ten. We can also say it's the most used measurement around the world, so all scientists have little to no conversion, but the main answer is probably the first one :)
Answer:
No
Explanation:
I'm not educated enough on the matter but from what I've been taught water boils at 100 Celsius and it simultaneously evaporates.