Answer:
The question is incomplete. The response options are as follows:
I. C-O or C=O
II. C-C
III. C-H
IV. O-H
The answer is: IV>III>I>II
Explanation:
V) O-H is a hydrogen bridge. The hydrogen bridge is characterized by being similar to dipole-dipole bonds.
III) C-H is an ionic bond. The ionic bond occurs when they fuse together due to electron transfer.
I) C=O is a covalent bond. The covalent bond happens when two atoms bond together to create a molecule, sharing its electrons that are in its most superficial layer,
II) C-C is covalent bond.
Answer:
Explanation:
= Half-life of carbon = 5700 years
t = Time at which the remaining mass is to be found = 10400 years
= Initial mass of carbon = 11 g
Decay constant is given by

Amount of mass remaining is given by

The amount of the substance that remains after 10400 years is
.
Answer: 122 moles
Procedure:
1) Convert all the units to the same unit
2) mass of a penny = 2.50 g
3) mass of the Moon = 7.35 * 10^22 kg (I had to arrage your numbers because it was wrong).
=> 7.35 * 10^22 kg * 1000 g / kg = 7.35 * 10^ 25 g.
4) find how many times the mass of a penny is contained in the mass of the Moon.
You have to divide the mass of the Moon by the mass of a penny
7.35 * 10^ 25 g / 2.50 g = 2.94 * 10^25 pennies
That means that 2.94 * 10^ 25 pennies have the mass of the Moon, which you can check by mulitiplying the mass of one penny times the number ob pennies: 2.50 g * 2.94 * 10^25 = 7.35 * 10^25.
5) Convert the number of pennies into mole unit. That is using Avogadros's number: 6.022 * 10^ 23
7.35 * 10^ 25 penny * 1 mol / (6.022 * 10^ 23 penny) = 1.22* 10^ 2 mole = 122 mol.
Answer: 122 mol
Substance P replaces X in the compound XY
this is the characteristic of decomposition reaction
163 lb * 1 kg / 2.205 lb * 15.0 mg/kg = 1108.8 mg or about 1.11 g