Polar regions do not receive direct sunlight during the winter months due to the tilt in the Earth's<span> axis. Hence, polar regions can get very cold. Antarctica is the </span>coldest place on Earth. <span>The </span>coldest places on Earth<span> tend to be located </span>near the poles<span>. Hope this answers the question.</span>
Answer:
Acceleration of the car will be 
Explanation:
We have given that car starts from rest so initial velocity of the car u = 0 m/sec
And car traveled 400 m in 10 sec
So distance traveled by car s = 400 m
Time taken to compete this distance t = 10 sec
We have to find the acceleration of the car
From second equation of motion we know that 
So 

So acceleration of the car will be 
Answer:
Mass of receiver is 92 kg
Explanation:
We have given mass of tackler 
Let the mass of receiver is 
When tackler moving alone velocity is
m/sec
And when tackler and receiver is together velocity is
= 2.5 m/sec
So from conservation of momentum





So mass of receiver is 92 kg
Answer:
<h3>The answer is option B</h3>
Explanation:
The wavelength of a wave can be found by using the formula

where
c is the speed of the wave
f is the frequency
From the question
c = 343 m/s
f = 466 Hz
We have

We have the final answer as
<h3>0.74 m</h3>
Hope this helps you