Answer:
Q/4πε0 [1/R - 1/√R2+d2]
Explanation:
Q/4πε0 [1/R - 1/√R2+d2] is the answer
explanation is attached.
toppr
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Mass of the continent</h3>
Density
is defined as a relation between mass
and volume
:
(1)
Where:
is the average density of the continent
is the mass of the continent
is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

Finding the mass:
(2)
(3)
(4) This is the mass of the continent
<h3>b) Kinetic energy of the continent</h3>
Kinetic energy
is given by the following equation:
(5)
Where:
is the mass of the continent
is the velocity of the continent
(6)
(7) This is the kinetic energy of the continent
<h3>c) Speed of the jogger</h3>
If we have a jogger with mass
and the same kinetic energy as that of the continent
, we can find its velocity by isolating
from (5):
(6)
Finally:
This is the speed of the jogger
Thank you for your question, what you say is true, the gravitational force exerted by the Earth on the Moon has to be equal to the centripetal force.
An interesting application of this principle is that it allows you to determine a relation between the period of an orbit and its size. Let us assume for simplicity the Moon's orbit as circular (it is not, but this is a good approximation for our purposes).
The gravitational acceleration that the Moon experience due to the gravitational attraction from the Earth is given by:
ag=G(MEarth+MMoon)/r2
Where G is the gravitational constant, M stands for mass, and r is the radius of the orbit. The centripetal acceleration is given by:
acentr=(4 pi2 r)/T2
Where T is the period. Since the two accelerations have to be equal, we obtain:
(4 pi2 r) /T2=G(MEarth+MMoon)/r2
Which implies:
r3/T2=G(MEarth+MMoon)/4 pi2=const.
This is the so-called third Kepler law, that states that the cube of the radius of the orbit is proportional to the square of the period.
This has interesting applications. In the Solar System, for example, if you know the period and the radius of one planet orbit, by knowing another planet's period you can determine its orbit radius. I hope that this answers your question.
Answer:
10.4mm
Explanation:
2 pages = 1 leaf
200 pages = 100 leaves
100 × 0.10 = 10 mm thickness
Total thickness = 2(0.20) +10 = 0.4+10 = 10.4mm
Answer:
efficiency of a machine is less than 100% because some part is energy is utilized to overcome some opposing forces like friction which is wasted as heat ,sound energy etc
Explanation: