1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sattari [20]
3 years ago
13

1.How does inertia affect a person who is not wearing a seatbelt during a collision?

Physics
1 answer:
natali 33 [55]3 years ago
8 0
1) Inertia is the tendency of an object in motion to keep moving in straight line with constant velocity, or to remain at rest if the object was initially at rest. A person in a moving car is moving together with the car, so his inertia is his tendency to keep moving with constant velocity. During a collision, therefore, if the person is not wearing a seatbelt, he will continue to move forrward due to his inertia (while the car will stop due to the crash), and eventually he will hit the windscreen of the car.

2) The more the kinetic energy, the larger the distance needed to stop the car. In fact, calling vi the initial speed of the car, vf the final velocity (which is zero, because we want the car to stop), a the deceleration of the car and S the stopping distance, we can use the following relationship:
v_f^2-v_i^2=2aS
Since vf=0, we can rewrite the stopping distance as
S=- \frac{v_i^2}{2a}
The vehicle in the two situations is the same, so we see that the larger the initial velocity (which means more kinetic energy), the larger the stopping distance. In particular, in this case the velocity in the second situation (60 mph) is twice the velocity in the first situation (30 mph), so the stopping distance in the second situation is 2^2=4 times larger than in the first situation.

3) The large vehicle has a larger mass than the small vehicle, so it also has greater kinetic energy, which is given by:
K= \frac{1}{2} mv^2
where m is the mass of the car and v is its velocity. Due to its larger mass, the large vehicle has a greater inertia: it means it would take more effort to stop it. In fact, the work done to stop the car is W=FS, where F is the force of the brakes and S is the stopping distance. For the work-energy theorem, this work is equal to the initial kinetic energy of the car:
\frac{1}{2} mv^2=FS
If we assume the brakes in the two cars can apply the same force, then we see that the larger the mass m, the larger the stopping distance S.

4) The best way for the driver to prepare to enter the sharp curve is to decrease the velocity: in fact, decreasing the velocity (and so, decreasing the kinetic energy) will allow him to stay in the curved path more easily. If the car is going too fast, it will tend to go straight away (due to its inertia), and it won't be able to do the curve.

<span>5) The damages produced by a car crash depend on the energy involved in the accident: the more the energy released, the larger the damages. In particular, since we are talking about kinetic energy
</span>K= \frac{1}{2} mv^2<span>
we see that the larger the mass of the vehicle, the greater the energy involved and so the larger the damages; and similarly, the larger the speed of the vehicle v, the greater the energy involved and so the larger the damages of the car crash.</span>
You might be interested in
PLEASE Please HELP ME...
cupoosta [38]

Answer:

girl this easy ask yo teacher for help lol

7 0
2 years ago
In the figure, a weightlifter's barbell consists of two identical small but dense spherical weights, each of mass 50 kg. These w
kondaur [170]

The moment of inertia is 24.8 kg m^2

Explanation:

The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.

The moment of inertia of the rod about its centre is given by

I_r = \frac{1}{12}ML^2

where

M = 24 kg is the mass of the rod

L = 0.96 m is the length of the rod

Substituting,

I_r = \frac{1}{12}(24)(0.96)^2=1.84 kg m^2

The moment of inertia of one ball is given by

I_b = mr^2

where

m = 50 kg is the mass of the ball

r=\frac{L}{2}=\frac{0.96}{2}=0.48 m is the distance of each ball from the axis of rotation

So we have

I_b = (50)(0.48)^2=11.5 kg m^2

Therefore, the total moment of inertia of the system is

I=I_r + 2I_b = 1.84+ 2(11.5)=24.8 kg m^2

Learn more about inertia:

brainly.com/question/2286502

brainly.com/question/691705

#LearnwithBrainly

6 0
3 years ago
What change happens when matter<br> changes states?
Snowcat [4.5K]
Matter either loses or absorbs energy when it changes from one state to another. For example, when matter changes from a liquid to a solid, it loses energy. The opposite happens when matter changes from a solid to a liquid. For a solid to change to a liquid, matter must absorb energy from its surroundings.
4 0
3 years ago
It took a student 30 minutes to drive from his home to campus on
Gennadij [26K]

Answer:

48 i believe

Explanation:

3 0
3 years ago
Particles 1 and 2 each mass m fixed to the ends of a rigid massless rod of length L1 + l2 with L1 = 20cm and l2 = 80 cm. The rod
Degger [83]

Answer:

Sorry bro I don't even know the answer

7 0
3 years ago
Other questions:
  • ). with the input voltage range set at +/- 500mv, what is the smallest difference in voltage that can be resolved? show your cal
    11·1 answer
  • When air is blown across the top of an open
    14·1 answer
  • 3. Ultraviolet can kill these. <br><br>8words and 2nd letter starts with an A​
    13·1 answer
  • What’s the difference between red blood cells and white blood cells
    7·2 answers
  • A snail crawls along at a constant rate of 3 centimeters per minute in a northly direction. This is a description of the snails
    14·2 answers
  • A student pushes a box with a total mass of 50 kg. What is the net force on the box
    11·1 answer
  • Brainliest and 100 POINTS
    7·2 answers
  • What were clark's independent and dependent variables
    7·2 answers
  • What is the purpose of oil used in a car's engine?
    9·1 answer
  • 1. A block of mass 0.4kg resting on the top of an inclined plane of height 20m starts to slide down on the surface of the inclin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!