Answer:
The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
Explanation:
We have expression for sound intensity level (SIL),

Here we need to find the intensity of sound (I).

Substituting
L = 67 dB and I₀ = 10⁻¹² W/m² in the equation

The intensity of sound (I) = 3.16 x 10⁻⁶ W/m²
When I went through with the math, the answer I came upon was:
<span>6.67 X 10^14 </span>
<span>Here is how I did it: First of all we need to know the equation. </span>
<span>c=nu X lamda </span>
<span>(speed of light) = (frequency)(wavelength) </span>
<span>(3.0 X 10^8 m/s) = (frequency)(450nm) </span>
<span>We want the answer in meters so we need to convert 450nm to meters. </span>
<span>450nm= 4.5 X 10^ -7 m </span>
<span>(3.0 X 10^8 m/s) = (frequency)(4.5 X 10^ -7 m) </span>
<span>Divide the speed of light by the wavelength. </span>
<span>(3.0 X 10^8m/s) / (4.5 X 10^ -7m) =6.67 X 10^ 14 per second or s- </span>
<span>Answer: 6.67 X 10^14 s- hope this helps</span>
Answer:
T'=92.70°C
Explanation:
To find the temperature of the gas you use the equation for ideal gases:

V: volume = 3000cm^3 = 3L
P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm
n: number of moles
R: ideal gas constant = 0.082 atm.L/mol.K
T: temperature = 27°C = 300.15K
For the given values you firs calculate the number n of moles:
![n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BPV%7D%7BRT%7D%3D%5Cfrac%7B%281520%5B0.001315atm%5D%29%283L%29%7D%7B%280.082%5Cfrac%7Batm.L%7D%7Bmol.K%7D%29%28300.15K%29%7D%3D0.200moles)
this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

hence, T'=92.70°C