There are two cases to consider.
A) The removed square is in an odd-numbered column (and row). In this case, the board is divided by that column and row into parts with an even number of columns, which can always be tiled by dominos, and the column the square is in, which has an even number of remaining squares that can also be tiled by dominos.
B) The removed square is in an even-numbered column (and row). In this case, the top row to the left of that column (including that column) can be tiled by dominos, as can the bottom row to the right of that column (including that column). The remaining untiled sections of the board have even numbers of rows, so can be tiled by dominos.
_____
Perhaps the shorter answer is that in an odd-sized board, the corner squares are the ones that there is one of in excess. Cutting out one that is of that color leaves an even number of squares, and equal numbers of each color. Such a board seems like it <em>ought</em> to be able to be tiled by dominos, but the above shows there is actually an algorithm for doing so.
Step-by-step explanation:
let width be x
length = 6+x
x times 6+x=135
2x+6=135
2x=135-6
129/2=x
64.5
Answer:
The answer to your question is Katie had 15 rocks and Oliver 45 rocks.
Step-by-step explanation:
Conditions
Katie has x amount of rocks
Oliver has 3x amount of rocks
The final amount of rocks
Oliver = 3x + 75
Katie = x + 105
Now, they have the same amount of rocks, then we can equal both equations
3x + 75 = x + 105
Solve for x
3x - x = 105 - 75
2x = 30
x = 30/2
x = 15
Conclusions
At first Katie had 15 rocks and Oliver had 3(15) = 45 rocks
Answer: 
Step-by-step explanation:
Step 1:-
Given equations are y=-2 x+30........(1)
another equation is y=4 x ..........(2)
Step 2:-
solving these two equations (1) and (2)
Equating both equations are 


Step 3:-
The final answer is 
Answer: I'm afraid I can't answer that.
Step-by-step explanation: I need details and if it's a workbook or something then I probably don't have it