Answer:
When a sound source moves faster than the speed of sound, a shock wave is produced as the sound waves interfere. A sonic boom is the intense sound that occurs as the shock wave moves along the ground.
More importantly, all of the energy gets concentrated into a very small distance this is called a shock wave. In this case, the observer does not hear the approaching source at all until the shock wave hits with all of the energy in the wave. For sound waves, this can cause a very loud noise, called a sonic boom.
Sonic booms produced by aircraft flying supersonic at altitudes of less than 100 feet, creating between 20 and 144 pounds overpressure, have been experienced by humans without injury. Damage to eardrums can be expected when overpres- sures reach 720 pounds
Explanation:
marke as brainliest
Jecbfyicrvdbicbicnrhecbydhbfc
Hehdbeeufhrbfuibcdsjibvhisbcznchbvrjkvn? Kiffbcrrhhsdfvcbiajsbnfucjoansdzuijcndj!!!
I think it is a, b, and e. Hope it helps! :)
Answer:
m = 8
Explanation:
A telescope is a device that allows us to see objects that were very far from us, it is built by the combination of two lenses, the one with the lowest focal length near the eye and that is the one or the one with the greatest focal length, the most eye-flounder . The magnification of the telescope is
m = - f₀ /
Where f₀ is the focal length of the lens and f_{e} is the false distance of the eyepiece.
It is this problem that gives us the diopter of each lens, these are related to the focal length in meters
D = 1 / f
Let's find the focal length
f₁ = 1 / D₁
f₁ = 1 / 1.16
f₁ = 0.862 m
f₂ = 1 / 9.37
f₂ = 0.1067 m
Therefore, the lens with f₂ is the eyepiece and the slow one with the
distance focal f₁ is the objective.
Let's calculate
m = - f₂ / f₁
m = - 0.862 / 0.1067
m = 8