Answer:
Tangential speed=5.4 m/s
Radial acceleration=
Explanation:
We are given that
Angular speed=2.59 rev/s
We know that
1 revolution=
2.59 rev=
By using 
Angular velocity=
Distance from axis=r=0.329 m
Tangential speed=
Radial acceleration=
Radial acceleration=
Answer: A. Work is done on the system and heat is transferred from the system for a net decrease in internal energy.
Explanation:
A refrigerator is a device which dispenses heat from the close system to a warmer area or in the surrounding. By dispensing the heat the internal temperature of the refrigerator drops. The system of refrigerator violates the second law of thermodynamics. As it performs the work to cool the region instead of heating the region. The work is done on the system and the internal energy decreases and the heat energy is liberated to the surrounding area. A refrigerator is an open system.
This question involves the concepts of th magnetic field and current.
The magnetic field created by the current at the house is "6.75 x 10⁻⁷ T".
<h3>Magnetic Field</h3>
The magnetic field created by a current carrying wire can be given by the following formula:

where,
- B = magnetic field = ?
= permeabiliy of free space =4π x 10⁻⁷- I = current = 152 A
- r = distance = 45 m

B = 6.75 x 10⁻⁷ T
Learn more about magnetic field here:
brainly.com/question/23096032
#SPJ1
Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Answer:
n = 4 x 10¹⁸ photons
Explanation:
First, we will calculate the energy of one photon in the radiation:

where,
E = Energy of one photon = ?
h = Plank's Constant = 6.625 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of radiation = 567 nm = 5.67 x 10⁻⁷ m
Therefore,

E = 3.505 x 10⁻¹⁹ J
Now, the number of photons to make up the total energy can be calculated as follows:

<u>n = 4 x 10¹⁸ photons</u>