Answer: 11,100 ft/s^2
1) Constant acceleration=> uniformly accelerated motion.
2) Formula for uniformly accelerated motion:
Vf = Vo + at
3) Data:
Vo = 1,100 ft/s
a = 1,000 ft/s^2
t = 10.0 s
4) Solution:
Vf = 1,100 ft/s + 1,000 ft/s^2 * 10.0 s = 1,100 ft/s + 10,000 ft/s
Vf = 11,100 ft/s
It's by number of protons
Answer:
D)
The energy of the wave moves perpendicular to the direction the wave travels.
Explanation:
I had this question on USA test prep and this was the correct answer
The point where m3 experiences a zero net gravitational force due to M1 and m2 is 57.42 m.
<h3>
Position of the third mass</h3>
m1<------(x)------> m3 <-----------(94.8 m - x)-------->m2
a point, x, where m3 experiences a zero net gravitational force due to M1 and m2;
Force on m3 due to m1 = Force on m3 due to m2
Gm1m3/d² = Gm2m3/r²
m1/d² = m2/r²
where;
- d is the distance between m1 and m3 = x
- r is the distance between m3 and m2 = 94.8 - x
m1/(x²) = m2/(94.8 - x)²
m1(94.8 - x)² = m2x²
(94.8 - x)² = (m2/m1)x²
(94.8 - x)² = (10.6/25)x²
(94.8 - x)² = 0.424x²
(94.8 - x)² = (0.651)²x²
94.8 - x = 0.651x
94.8 = 1.651x
x = 94.8/1.651
x = 57.42 m
Thus, the point where m3 experiences a zero net gravitational force due to M1 and m2 is 57.42 m.
Learn more about gravitational force here: brainly.com/question/72250
#SPJ1
Water waves are an example of waves that involve a combination of both longitudinal and transverse motions. As a wave travels through the waver, the particles travel in clockwise circles. The radius of the circles decreases as the depth into the water increases.