Answer: Volume of gas in the stomach, V = 0.0318L or 31.8mL
Explanation:
The number of moles of oxygen will remain constant even though the liquid oxygen will undergo a change of state to gaseous inside the person's stomach due to an increase in temperature.
<em>Number of moles of oxygen gas = mass/molar mass</em>
molar mass of oxygen gas = 32 g/mol
mass of oxygen gas = density * volume
mass of oxygen gas = 1.149 g/ml * 0.035 ml
mass of oxygen gas = 0.040215 g
Number of moles of oxygen gas = 0.0402 g/(32 g/mol)
Number of moles of oxygen gas = 0.00125 moles
<em>Using the ideal gas equation, PV=nRT</em>
where P = 1.0 atm, V = ?, n = 0.00125 moles, R = 0.082 L*atm/K*mol, T = (37 + 273)K = 310 K
<em>V = nRT/P</em>
V = (0.00125moles) * (0.082 L*atm/K*mol) * (310 K) / 1 atm
V = 0.0318L or 31.8mL
Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.

That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.
Answer:
When hydrogen gas combines with nitrogen to form Ammonia the following chemical reaction will take place. Our equilibrium reaction will be N2(g) + 3H2(g) ⇔ 2NH3(g) + Heat. In this case, Hydrogen and nitrogen react together to form ammonia.
Explanation:
Through replication, it produces another identical DNA.
So, Option C is your answer.
Hope this helps!