1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
6

I need help please!!

Chemistry
1 answer:
SVETLANKA909090 [29]3 years ago
4 0

Answer:c

Explanation:

You might be interested in
A 20.0 mL 0.100 M solution of lactic acid is titrated with 0.100 M NaOH.
yan [13]

Answer:

(a) See explanation below

(b) 0.002 mol

(c) (i) pH = 2.4

(ii) pH = 3.4

(iii) pH = 3.9

(iv) pH = 8.3

(v) pH = 12.0

Explanation:

(a) A buffer solution exits after addition of 5 mL of NaOH  since after reaction we will have  both the conjugate base lactate anion and unreacted weak  lactic acid present in solution.

Lets call lactic acid HA, and A⁻ the lactate conjugate base. The reaction is:

HA + NaOH ⇒ A⁻ + H₂O

Some unreacted HA will remain in solution, and since HA is a weak acid , we will have the followin equilibrium:

HA  + H₂O ⇆ H₃O⁺ + A⁻

Since we are going to have unreacted acid, and some conjugate base, the buffer has the capacity of maintaining the pH in a narrow range if we add acid or base within certain limits.

An added acid will be consumed by the conjugate base A⁻ , thus keeping the pH more or less equal:

A⁻ + H⁺ ⇄ HA

On the contrary, if we add extra base it will be consumed by the unreacted lactic acid, again maintaining the pH more or less constant.

H₃O⁺ + B ⇆ BH⁺

b) Again letting HA stand for lactic acid:

mol HA =  (20.0 mL x  1 L/1000 mL) x 0.100 mol/L = 0.002 mol

c)

i) After 0.00 mL of NaOH have been added

In this case we just have to determine the pH of a weak acid, and we know for a monopric acid:

pH = - log [H₃O⁺] where  [H₃O⁺] = √( Ka [HA])

Ka for lactic acid = 1.4 x 10⁻⁴  ( from reference tables)

[H₃O⁺] = √( Ka [HA]) = √(1.4 x 10⁻⁴ x 0.100) = 3.7 x 10⁻³

pH = - log(3.7 x 10⁻³) = 2.4

ii) After 5.00 mL of NaOH have been added ( 5x 10⁻³ L x 0.1 = 0.005 mol NaOH)

Now we have a buffer solution and must use the Henderson-Hasselbach equation.

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.0005                0

after rxn    0.002-0.0005                  0                  0.0005

                        0.0015

Using Henderson-Hasselbach equation :

pH = pKa + log [A⁻]/[HA]

pKa HA = -log (1.4 x 10⁻⁴) = 3.85

pH = 3.85 + log(0.0005/0.0015)

pH = 3.4

iii) After 10.0 mL of NaOH have been ( 0.010 L x 0.1 mol/L = 0.001 mol)

                             HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.001               0

after rxn        0.002-0.001                  0                  0.001

                        0.001

pH = 3.85 + log(0.001/0.001)  = 3.85

iv) After 20.0 mL of NaOH have been added ( 0.002 mol )

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.002                 0

after rxn                 0                         0                   0.002

We are at the neutralization point and  we do not have a buffer anymore, instead we just have  a weak base A⁻ to which we can determine its pOH as follows:

pOH = √Kb x [A⁻]

We need to determine the concentration of the weak base which is the mol per volume in liters.

At this stage of the titration we added 20 mL of lactic acid and 20 mL of NaOH, hence the volume of solution is 40 mL (0.04 L).

The molarity of A⁻ is then

[A⁻] = 0.002 mol / 0.04 L = 0.05 M

Kb is equal to

Ka x Kb = Kw ⇒ Kb = 10⁻¹⁴/ 1.4 x 10⁻⁴ = 7.1 x 10⁻¹¹

pOH is then:

[OH⁻] = √Kb x [A⁻]  = √( 7.1 x 10⁻¹¹ x 0.05) = 1.88 x 10⁻⁶

pOH = - log (  1.88 x 10⁻⁶ ) = 5.7

pH = 14 - pOH = 14 - 5.7 = 8.3

v) After 25.0 mL of NaOH have been added (

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn           0.002                  0.0025              0

after rxn                0                         0.0005              0.0005

Now here what we have is  the strong base sodium hydroxide and A⁻ but the strong base NaOH will predominate and drive the pH over the weak base A⁻.

So we treat this part as the determination of the pH of a strong base.

V= (20 mL + 25 mL) x 1 L /1000 mL = 0.045 L

[OH⁻] = 0.0005 mol / 0.045 L = 0.011 M

pOH = - log (0.011) = 2

pH = 14 - 1.95 = 12

7 0
3 years ago
A gas mixture with 4 mol of Ar, x moles of Ne, and y moles
maks197457 [2]

Answer:

a) \Delta G_{mixing}=\frac{R*T}{12}*[4*ln (1/3) +x*ln (x/12) +(8-x)*ln ((8-x)/12)]

b) x=4

c) \Delta G_{max}=-2721.9 J/mol

Explanation:

Gas mixture:

n_{Ar}= 4 mol

n_{Ne}= x mol

n_{Xe}= y mol

n_{tot}= n_{Ar} + n_{Ne} + n_{Xe}=3*n_{Ar}

n_{Ne} + n_{Xe}=2*n_{Ar}

x + y=8 mol

y=8 mol- x

Mol fractions:

x_{Ar}=\frac{4 mol}{12 mol}=1/3

x_{Ne}=\frac{x mol}{12 mol}=x/12

x_{Xe}=\frac{8 - x mol}{12 mol}=(8-x)/12

Expression of \Delta G_{mixing}

\Delta G_{mixing}=R*T*\sum_{i]*x_i*ln (x_i)

\Delta G_{mixing}=R*T*[1/3*ln (1/3) +x/12*ln (x/12) +(8-x)/12*ln ((8-x)/12)]

\Delta G_{mixing}=\frac{R*T}{12}*[4*ln (1/3) +x*ln (x/12) +(8-x)*ln ((8-x)/12)]

Expression of \Delta G_{max}

\frac{d \Delta G_{mixing}}{dx}=0

\frac{d \Delta G_{mixing}}{dx}=\frac{R*T}{12}*[ln (x/12)+12-ln ((8-x)/12)-12]

0=\frac{R*T}{12}*[ln (x/12)-ln ((8-x)/12)

0=[ln (x/12)-ln ((8-x)/12)

ln (x/12)=ln ((8-x)/12)

x=(8-x)

x=4

\Delta G_{max}=\frac{8.314*298}{12}*[4*ln (1/3) +4*ln (4/12) +(8-4)*ln ((8-4)/12)]

\Delta G_{max}=\frac{8.314*298}{12}*[4*ln (1/3) +4*ln (1/3) +(4)*ln (1/3)]

\Delta G_{max}=\frac{8.314*298}{12}*[12*ln (1/3)]

\Delta G_{max}=-2721.9 J/mol

4 0
3 years ago
Crack is manufactured by using _________________________ to remove hydrochlorides to create a crystaline form of cocaine that ca
Akimi4 [234]

Answer:Sodium Bicarbonate

Explanation:Crack is manufactured by using Sodium Bicarbonate (NaHCO3) to remove hydrochlorides to create a crystalline form of cocaine that can be smoked.

3 0
3 years ago
Calculate the molecular mass of Al2(SO4)3(Molecular mass of Al=27, S=32, O=16) Pls fast
Whitepunk [10]

Al₂(SO₄)₃

= 2.Al+3.S+12.O

= 2.27 + 3.32+12.16

= 54+96+192

=342 g/mol

8 0
1 year ago
When a cold pack is used, ammonium chloride mixes with water and energy is absorbed from the water to reduce the temperature of
Leto [7]
I think the answer is Endothermic. Since the question says "absorbs," endo means to "go in" sort of and exo means to exit.

exo = exit
endo = enter
(A trick my teacher taught us)

Sorry if I'm wrong, hope I helped. :)
7 0
3 years ago
Read 2 more answers
Other questions:
  • The chemicals used on farms, golf courses, and domestic gardens are often to blame when groundwater becomes contaminated with A.
    14·2 answers
  • Scientific evidence shows that Earth's diameter, and thus overall size, does.
    5·1 answer
  • How does this article relate to me?
    14·2 answers
  • What is volcanoes be my friend
    7·2 answers
  • Identify each energy exchange as primarily heat or work and determine whether the sign of ΔE is positive or negative for the sys
    5·1 answer
  • What do the following have in common: MgCl2, AlF3, CaI2, KCl
    12·2 answers
  • What mass of NH3 (in grams) must be used to produce 5.65 tons of HNO3 by the Ostwald process, assuming an 80.0 percent yield in
    12·1 answer
  • PLEASE SOMEONE! The density of the acetic acid solution is 1.05 g/mL. Calculate the %(m/m) of the acetic acid solution (convert
    12·1 answer
  • A gas sample occupies 95.0 mL at 755 mmHg at 15°C. Calculate the volume at 957 mmHG and 49 degrees C.​
    14·1 answer
  • Find the sum of angles x° and y° from the given figure​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!