1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
6

Please help me it is due tonight

Mathematics
1 answer:
Aneli [31]3 years ago
8 0

Answer: with what

Step-by-step explanation:

You might be interested in
There are three apple orchards. Each orchard has a different number of trees and apples.
Assoli18 [71]

Answer:

A. The #1 Seed

Step-by-step explanation

To find the answer you find the rate of one apple tree to # of apples. you do this by dividing the # of apples from the orchard by the apple trees and whichever has the highest rate of Apples to Trees is the answer which would be The #1 Seed.

4 0
3 years ago
What is the domain and range of the following function
mel-nik [20]

Answer:

domain: (–∞,∞)    or  all real numbers

range: (–∞,∞)       or  all real numbers

Step-by-step explanation:

domain is left to right (x-axis). looking at the graph, as you go from left to right, the x-values are infinitely getting more negative and positive.

range is bottom to top (y-axis). as you go from bottom to top, the y-values are infinitely getting more negative and positive.

6 0
3 years ago
Using the figure below, select the pairs of complementary angles.
Mila [183]

Answer:

c) <DBE and <EBC

Step-by-step explanation:

This is because when added together, both angles equal 90 degrees.

Complementary angles always equal 90 degrees.

8 0
3 years ago
A rectangular sign has length of 3 and 1/2 ft and a width of 1 and 1/8 ft. Will the area of the sign be greater or less than 3 a
zavuch27 [327]

Answer:

Area = 3\dfrac{15}{16}\ sq\ ft

Area is greater than 3\frac{1}{2} sq ft.

Step-by-step explanation:

Length of rectangular sign board = 3\frac{1}{2} ft

Width of rectangular sign board = 1\frac{1}{8} ft

Area of a rectangle is given by the formula:

A = Length \times Width

To find the area, we are going to multiply 3\frac{1}{2} with 1\frac{1}{8}.

1\frac{1}{8} is greater than 1.

Therefore the multiplication will be greater than 3\frac{1}{2}.

Hence, we can say that area will be greater than 3\frac{1}{2} sq ft.

Area of the sign:

A = 3\dfrac{1}{2}\times 1\dfrac{1}8\\\Rightarrow A = \dfrac{7}{2}\times \frac{9}8\\\Rightarrow A = \dfrac{63}{16}\\\Rightarrow A = 3\dfrac{15}{16}\ sq\ ft

8 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • A = $14,560; P = $13,000; t = 4 months; r =? ( I know the answer but how do I convert the time? 4/12??)
    10·1 answer
  • Name 4 real life situation in which integers can be used <br>​
    9·1 answer
  • -12 = -5(x - 3) ......​
    12·2 answers
  • The answer to all of these problems
    11·1 answer
  • Leo works at McDonalds, and gets paid $8.50 hr. He passed his store’s inspection and received a $100 bonus.
    15·2 answers
  • Help please and thank you
    7·1 answer
  • In the following figure, m∠A = 55° and the m∠ACE = 86° . What is the m∠E = ? Show your work.
    12·1 answer
  • A clock loses 5 seconds every 12 minutes. At this rate, how many minutes will the clock lose in a 24-hour period?
    12·2 answers
  • Evaluate the expression 9P5
    7·1 answer
  • Help me to do this question plz plz plz <br>I will mark you as brainlist who has answered right ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!