1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
15

A thick, spherical shell made of solid metal has an inner radius a = 0.18 m and an outer radius b = 0.33 m, and is initially unc

harged. A point charge q = 5.00 C is placed at the center of the shell. What is the electric field strength in the region r < a? Express your answer in terms of 1/r2. Tries 0/8 What is the electric field strength in the region a < r < b? Express your answer in terms of 1/r2. Tries 0/8 What is the electric field strength in the region b < r? Express your answer in terms of 1/r2. Tries 0/8 What is the induced charge density at r = a? (in C/m^2) Tries 0/8 What is the induced charge density (in C/m2) at r = b? (in C/m^2)
Physics
1 answer:
Vesnalui [34]3 years ago
7 0

A) E=\frac{4.50\cdot 10^{10}}{r^2} V/m

r < a

We can find the magnitude of the electric field by using Gauss theorem. Taking a Gaussian spherical surface of radius r centered in the centre of the sphere, the electric flux through the surface of the sphere is equal to the ratio between the charge contained in the sphere and the vacuum permittivity:

E\cdot 4 \pi r^2 = \frac{q}{\epsilon_0}

For r < a, the charge contained in the gaussian sphere is the point charge:

q=5.00 C

So the electric field in this region is

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{5.00 C}{4\pi (8.85\cdot 10^{-12} F/m)}\frac{1}{r^2}=\frac{4.50\cdot 10^{10}}{r^2} V/m

B) E = 0

a < r < b

The region a < r < b is the region between the inner and the outer surface of the shell. We have to keep in mind that the presence of the single point charge +q = 5.00 C at the center of the sphere induces an opposite charge -q on the inner surface (r=a), and a charge of +q at the outer surface (r=b).

Using again Gauss theorem

E\cdot 4 \pi r^2 = \frac{q'}{\epsilon_0}

this time we have that the gaussian sphere contains both the single point charge +q and the negative charge -q induced at r=a, so the net charge contained in the sphere is

q' = +q - q = 0

And so, the electric field in this region is zero.

C) E=\frac{4.50\cdot 10^{10}}{r^2} V/m

r > b

Here we are outside of the sphere. Using Gauss theorem again

E\cdot 4 \pi r^2 = \frac{q'}{\epsilon_0}

this time we have that the gaussian sphere contains the single point charge +q, the negative charge -q induced at r=a, and the positive charge +q induced at r=b, so the net charge contained in the sphere is

q' = +q - q +q = q

And so the electric field is identical to the one inside the sphere:

E=\frac{q}{4\pi \epsilon_0 r^2}=\frac{5.00 C}{4\pi (8.85\cdot 10^{-12} F/m)}\frac{1}{r^2}=\frac{4.50\cdot 10^{10}}{r^2} V/m

D) -12.29 C/m^2

We said that the charge induced at the inner surface r=a is

-q = -5.00 C

The induced charge density is

\sigma = \frac{-q}{A}

where A is the area of the inner surface of radius r = a = 0.18 m, so it is

A=4\pi a^2 = 4 \pi (0.18 m)^2=0.407 m^2

So the induced charge density is

\sigma = \frac{-5.00 C}{0.407 m^2}=-12.29 C/m^2

E) +3.65 C/m^2

We said that the charge induced at the outer surface r=b is

+q = +5.00 C

The induced charge density is

\sigma = \frac{+q}{A}

where A is the area of the outer surface of radius r = b = 0.33 m, so it is

A=4\pi b^2 = 4 \pi (0.33 m)^2=1.368 m^2

So the induced charge density is

\sigma = \frac{+5.00 C}{1.368 m^2}=+3.65 C/m^2

You might be interested in
A 300 gg ball on a 70-cmcm-long string is swung in a vertical circle about a point 200 cmcm above the floor. The string suddenly
Ratling [72]

Answer:

the   tension in the string an instant before it broke = 34 N

Explanation:

Given that :

mass of the ball m = 300 g = 0.300 kg

length of the string r = 70 cm = 0.7 m

At highest point, law of conservation of energy can be expressed as :

\frac{1}{2} mv^2 = mgh\\\\v = \sqrt{2gh}\\\\v = \sqrt{2*(9.8 \  m/s^2)*(6.00 \ m - 2.00 \ m)}\\\\

v = 8.854 \ m/s

The tension in the string is:

T = \frac{mv^2}{r}\\\\T = \frac{(0.300 \ kg)*(8.854 \ m/s^2)}{0.70 \ m}\\\\T = 33.59 N\\\\T = 34 \ N

Thus, the   tension in the string an instant before it broke = 34 N

6 0
3 years ago
In the bohr model, what is the ratio of its kinetic energy to its potential energy?
stich3 [128]

The centrifugal force C = mv^2/r = kq^2/r^2 = P centripetal force. m is the electron mass, q are the proton and electron charges (opposites), and r is the Bohr radius.

Thus 1/2 mv^2/r = 1/2 kq^2/r^2 and KE = 1/2 mv^2 = 1/2 kq^2/r = 1/2 PE

Therefore KE/PE = 1/2, no matter what state the electron is in.

8 0
3 years ago
An engine causes a car to move 10 meters with a force of 100 N. The engine produces 10,000 J of energy. What is the efficiency o
kodGreya [7K]

Answer:

Part A

The efficiency of the engine is 10%

Part B

The change in internal energy is 300 J

Part C

The change in volume is 1 m³ which is one cubic meter

Explanation:

Part A

Efficiency is defined as the ratio of energy output to energy input;

The given parameters are;

The distance the car is moved, d = 10 meters

The force which moves the car, F = 100 N

The amount of energy produced by the engine = 1,000 J

Therefore, we have;

The energy output to the car = The work done on the car = Force applied to the car, F × The distance the car moves, d;

∴ The energy output to the car by the engine = F × d = 100 N × 10 m = 1,000 J

The energy input from the engine = The energy produced by the engine = 10,000 J

The efficiency of the engine = (The energy output)/(The energy input)= 1,000J/10,00J = 0.1

The efficiency in percentage = 0.1 × 100 = 10 %

The efficiency of the engine = 10%

Part B

The amount of heat added to the substance, ΔQ = 1,000J

The amount of work the substance does on the atmosphere, W = 700 J

The change in internal energy, ΔU is given as follows;

ΔQ = W + ΔU

∴ ΔU = ΔQ - W

For the substance, we have;

The change in internal energy, ΔU = 1,000 J - 700 J = 300 J

Part C

The work done by the piston, W = 1,000 J

The pressure, in the piston, P = 1,000 Pa = constant

The work done by the piston in a constant pressure process, W = P × ΔV

Where;

W = The work done

P = The constant pressure applied

ΔV = The change in volume = V₂ - V₁

V₂ = The final volume

V₁ = The initial volume

∴The change in volume ΔV = W/P = 1,000 J/(1,000Pa) = 1 m³

The change in volume ΔV = 1 m³

3 0
3 years ago
A ball is thrown vertically upward with an initial velocity
ivolga24 [154]

Answer:

D

Explanation:

First we define our variables

V0=29.4

a=-9.8

V=0

We have to find the maximum displacement , which I will define as X

We use formula v^2=v0^2+2aX

All we do is substitute our values

0=29.4^2-19.6X

29.4^2=19.6X

X=29.4^2/19.6=44.1

5 0
2 years ago
HELPPPP I DONT HAVE ENOUGH WRITTEN <br> Describe the process of sea floor spreading.
Allisa [31]

Answer:

Seafloor spreading is a geologic process in which tectonic plates—large slabs of Earth's lithosphere—split apart from each other. ... As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense

Explanation:

6 0
3 years ago
Other questions:
  • An initially stationary 2.7 kg object accelerates horizontally and uniformly to a speed of 13 m/s in 4.0 s. (a) In that 4.0 s in
    12·1 answer
  • When the object is at half its amplitude from equilibrium, is the magnitude of its acceleration at half its maximum value?
    7·1 answer
  • How was the earliest version of the periodic table organized before Mendeleev?
    11·1 answer
  • 1. A change in an object's speed has a(n) _________ effect on its kinetic energy than a change in its mass.
    11·2 answers
  • A force =(16.8N/s)t is applied to an object of m=45.0kg. Ignoring friction, how far does the object travel from rest in 5.00s?
    5·1 answer
  • Why is net force a vector sum A.All forces have direction and magnitude B.Forces can only be attractive C.All forces are contact
    8·1 answer
  • A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
    10·1 answer
  • A car traveling 23 m/s begins to decelerate at a constant rate of 5 m/s^2 . After how many seconds does the car come to a stop?
    5·1 answer
  • Can someone please help me on thisss
    13·1 answer
  • What does water’s high specific heat capacity explain about water?(1 point)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!