Answer:
its on quizlet
Step-by-step explanation:
Answer:
The train need to leave Portland at 03:27 am
Step-by-step explanation:
step 1
Find out how long it takes the train to travel from Portland, Oregon, to Los Angeles, California
Remember that
The speed is equal to divide the distance by the time
so
The time is equal to divide the distance by the speed
Let
s ---> the speed in miles per hour
d ---> the distance in miles
t ---> the time in hours

we have


substitute

step 2
Adds 30 minutes (time it takes to get from the train station to her aunt's house)
Remember that


Convert to minutes

step 3
Remember that

Convert to minutes

Subtract 993 minutes from 1,200 minutes

Convert to hours+minutes


so


therefore
The train need to leave Portland at 03:27 am
Answer:
f(x) = ( 1/3) ^ (x)
Step-by-step explanation:
The function is
f(x) = (1/3) ^ (x)
When x = 1 f(x) = 1/3
when x=2 f(x) = 1/9
When x = -1 f(x) = ( 1/3) ^ -1 = 3/1 =3
Answer:

Step-by-step explanation:


3. This problem incorporates an exponent property.
Exponent property used:
, yielding an answer of 

<h3>
Answer: Check out the diagram below.</h3>
Explanation:
Use your straightedge to extend segment AB into ray AB. This means you'll have it start at A and go on forever through B. Repeat these steps to turn segment AC into ray AC.
The two rays join at the vertex angle A. Point A is the center of the universe so to speak because it's the center of dilation. We consider it an invariant point that doesn't move. Everything else will move. In this case, everything will move twice as much compared to as before.
Use your compass to measure the width of AB. We don't need the actual number. We just need the compass to be as wide from A to B. Keep your compass at this width and move the non-pencil part to point B. Then mark a small arc along ray AB. What we've just done is constructed a congruent copy of segment AB. In other words, we've just double AB into AB'. This means the arc marking places point B' as the diagram indicates.
The same set of steps will have us construct point C' as well. AC doubles to AC'
Once we determine the locations of B' and C', we can then form triangle A'B'C' which is an enlarged copy of triangle ABC. Each side of the larger triangle has side lengths twice as long.
Note: Points A and A' occupy the same exact location. As mentioned earlier, point A doesn't move.