Answer:
The answers to the questions are given below.
Explanation:
According to Le Chatelier's principle, if an external constrain such as change in concentration, temperature or pressure is imposed on a chemical system in equilibrium, the equilibrium will shift in order to neutralize the effect.
A. Effective of removing ammonia, NH3.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Removing NH3 from the reaction simply means we are left with more reactants and no product. Therefore, the reactant will react to produce the product. Hence, the equilibrium position will shift to the right.
2. Effect of removing H2
N2(g) + 3H2(g) ⇌ 2NH3(g)
Remoing H2 simply means we have more products and less reactant. Therefore, the product will be convert to reactant. Hence, the equilibrium position will shift to the left.
C. Effect of adding a catalyst.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Catalyst does not affect the equilibrium position. It only creates an alternative path to arrive at the product within a short time. Hence, it has no effect.
Answer:

Explanation:
The HF is about five million times as strong as phenol, so it will be by far the major contributor of hydronium ions. We can ignore the contribution from the phenol.
1 .Calculate the hydronium ion concentration
We can use an ICE table to organize the calculations.
HF + H₂O ⇌ H₃O⁺ + F⁻
I/mol·L⁻¹: 2.7 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 2.7 - x x x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}] \text{F}^{-}]} {\text{[HF]}} = 7.2 \times 10^{-4}\\\\\dfrac{x^{2}}{2.7 - x} = 7.2 \times 10^{-4}\\\\\text{Check for negligibility of }x\\\\\dfrac{2.7}{7.2 \times 10^{-4}} = 4000 > 400\\\\\therefore x \ll 2.7\\\dfrac{x^{2}}{2.7} = 7.2 \times 10^{-4}\\\\x^{2} = 2.7 \times 7.2 \times 10^{-4} = 1.94 \times 10^{-3}\\x = 0.0441\\\text{[H$_{3}$O$^{+}$]}= \text{x mol$\cdot$L$^{-1}$} = \text{0.0441 mol$\cdot$L$^{-1}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%20%5Ctext%7BF%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHF%5D%7D%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%20-%20x%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctext%7BCheck%20for%20negligibility%20of%20%7Dx%5C%5C%5C%5C%5Cdfrac%7B2.7%7D%7B7.2%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%204000%20%3E%20400%5C%5C%5C%5C%5Ctherefore%20x%20%5Cll%202.7%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B2.7%7D%20%3D%207.2%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%202.7%20%5Ctimes%207.2%20%5Ctimes%2010%5E%7B-4%7D%20%3D%201.94%20%5Ctimes%2010%5E%7B-3%7D%5C%5Cx%20%3D%200.0441%5C%5C%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%7D%3D%20%5Ctext%7Bx%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D%20%3D%20%5Ctext%7B0.0441%20mol%24%5Ccdot%24L%24%5E%7B-1%7D%24%7D)
2. Calculate the pH
![\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.0441} = \large \boxed{\mathbf{1.36}}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.0441%7D%20%3D%20%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.36%7D%7D)
3. Calculate [C₆H₅O⁻]
C₆H₅OH + H₂O ⇌ C₆H₅O⁻ + H₃O⁺
2.7 x 0.0441

The answer is A.
Which is... KCI
It would be 1 or 2 because if the number is higher than 5 you need to round up , if its lower than 5 you need to round down.
Answer:
Properties of transition elements
they are all metals and that most of them are hard, strong, and lustrous, have high melting and boiling points, and are good conductors of heat and electricity.