Answer = 2x^2+6x+1
3x+2+2x^2+3x-1
3x+1+2x^2+3x
Now combine like terms
3x+1+2x^2+3x
6x+1+2x^2
Rearrange terms
6x+1+2x^2
2x^2+6x+1
Step-by-step explanation:
3 cookies= 240 cal
∴ 1 cookie= 240÷3 cal
∴ 5 cookies= (240÷3) × 5
⇒ 240÷3= 80
⇒ 80 × 5= 400
[ans] 400 cal
Answer:
−35.713332 ; 0.313332
Step-by-step explanation:
Given that:
Sample size, n1 = 11
Sample mean, x1 = 79
Standard deviation, s1 = 18.25
Sample size, n2 = 18
Sample mean, x2 = 96.70
Standard deviation, s2 = 20.25
df = n1 + n2 - 2 ; 11 + 18 - 2 = 27
Tcritical = T0.01, 27 = 2.473
S = sqrt[(s1²/n1) + (s2²/n2)]
S = sqrt[(18.25^2 / 11) + (20.25^2 / 18)]
S = 7.284
(μ1 - μ2) = (x1 - x2) ± Tcritical * S
(μ1 - μ2) = (79 - 96.70) ± 2.473*7.284
(μ1 - μ2) = - 17.7 ± 18.013332
-17.7 - 18.013332 ; - 17.7 + 18.013332
−35.713332 ; 0.313332
M<ABC= (AD+CE)/2=(100+45)/2=145/2
m<ABC=72° 30'
Answer:
c. (x^2+1)(x^2+a)-a = x^2(x^2+a+1)
Step-by-step explanation:
You can use FOIL or the distributive property to expand the product of binomials, Then collect terms and factor out the common factor.
(x^2+1)(x^2+a)-a
= x^2(x^2 +a) +1(x^2 +a) -a
= x^4 +ax^2 +x^2 +a -a
= x^4 +ax^2 +x^2
= x^2(x^2 +a +1) . . . . . matches choice C